Research Council on Mathematics Learning (RCML) 2015

Mathematics Curriculum: Paving the road to student learning

Las Vegas, NV February 26–February 28, 2015 Picture taken from https://mylongandwindingroad.wordpress.com

Table of Contents

Invited	1
Founders Lecture, Daniel Brahier	1
Acknowledgements	
RCML Officers	4
Overview of Friday Morning Sessions	5
Overview of Friday Afternoon Sessions	6
Overview of Saturday Morning Sessions	7
Thursday Afternoon Poster Presentations	8
Friday Morning Sessions	12
Friday Afternoon Sessions	21
Saturday Morning Sessions	27
Presenters Index	37

Founders Lecture

Daniel Brahier, Bowling Green State University

Principles, Actions, and RCML

Friday, February 27th, 4:30 - 5:30, Room: Zeus

Abstract With the publication of Principles to Actions, the National Council of Teachers of Mathematics has revisited the research and revised and its vision for reforming mathematics education. Similarly, RCML refocused its direction and mission with the change from its former name of RCDPM and continues to evolve. In this session, we explore the transformation of mathematics education over time and how RCML can help to shape the future of the teaching and learning of mathematics for all students.

Biography Daniel Brahier is a Professor of Mathematics Education at Bowling Green State University who also teaches junior high mathematics at St. Rose School in Perrysburg, Ohio. Throughout his career, he has taught science and mathematics at high school and middle school levels and has served as a school principal and district curriculum consultant. He is the author of several books on mathematics education,

including a methods textbook entitled *Teaching Secondary and Middle School Mathematics* and most recently served as a lead author of NCTM's new *Principles to Actions* document. He is married and the father of three sons. His wife and oldest son are also mathematics teachers.

Wilson Lecture

Alex Dixon and Juli K. Dixon, University of Central Florida How do we fill the gaps? A case study approach to rethinking RtI Thursday, February 26, 2015, 5:30 PM - 6:30 PM, Room: Zeus Abstract Students with special needs are often taught exclusively through key words and direct instruction. Learn first-hand from a student with special needs how teaching key words and direct instruction were successfully replaced with teaching for understanding in an inclusive environment.

Biography Alex Dixon was a normal, bright, healthy girl, when a sudden onset of a mysterious illness took over her life. Months of treatments failed to provide relief from acute pain and muscle spasms. Doctors across the country were at a loss. A last attempt at treatment - brain surgery - stopped the spasms but caused a massive

stroke. At age 12, Alex had to relearn everything. Now 17, Alex shares her story and her amazing recovery. She provides a personal account of strategies for supporting a student with special needs to learn mathematics with depth.

Juli Dixon, Alex's mom, is professor of mathematics education at the University of Central Florida. A prolific writer, she has published numerous textbooks and articles as well as delivered keynote presentations throughout the United States. Juli used everything she knew about teaching and learning to "re-teach" Alex. Her perspectives on "what worked" are relevant to current issues in mathematics education in general as well as to teaching students with special needs.

Learn more about Alex's story at http://www.astrokeofluck.net.

WELCOME!

RCML Welcome Statement: Welcome to the 42^{nd} RCML Annual Conference! We would like to thank all of the speakers, attendees, and contributors of the conference. We hope you enjoy all of the sessions and receive valuable information that you can share with your colleagues. We welcome you to Las Vegas, and we anticipate you will have a wonderful experience. Please let us know if we can assist you in anyway. Enjoy the conference!

Conference Chairs: Jeff Shih and Travis Olson, University of Nevada, Las Vegas

Program Chair: Christa Jackson, Iowa State University

Acknowledgements:

University of Nevada, Las Vegas A special thank you goes to the University of Nevada, Las Vegas for their support of the 2015 RCML Conference.

EAI Education

A special thank you for EAI Education and Barbara Tuzzeo for donating conference bags for the attendees. We appreciate their support of the 2015 RCML Conference.

Proposal Reviewers

We extend a special thanks to the team who reviewed proposals: Robert Afonso, Mollie Appelgate, Chris Austin, Kayla Blyman, Jonathan Bostic, Kelley Buchheister, Laura Callis, Maureen Cavalcanti, Kansas Conrady, Becky Darrough, Bill Deleeuw, Eileen Faulkenberry, Angela Krebs, Maranda Miller, Travis Olson, Sarah Roberts, Thomas Roberts, Alejandra Salinas, Sasha Wang, and Sean Yee.

Program Layout

A huge thank you goes to Dr. Keith Emmert for working many hours to prepare the layout of the program booklet.

PRESIDENT, 2013-2015 Mary Swarthout Sam Houston State University Huntsville, Texas 77341 swarthout@shsu.edu

PRESIDENT ELECT, 2014-2015 Juliana Utley Oklahoma State University Stillwater, OK 74078 juliana.utley@okstate.edu

VICE PRESIDENT FOR CONFERENCES, 2014-2016 Eileen Faulkenberry Tarleton State University Stephenville, Texas efaulkenberry@tarleton.edu

VICE PRESIDENT FOR PUBLICATIONS, 2009-2014 Sheryl A. Maxwell University of Memphis Memphis, TN 38152 smaxwell@memphis.edu

SECRETARY, 2013-2015 Darlinda Cassel University of Central Oklahoma Edmund, OK dcassel2@uco.edu

TREASURER, 2014-2016 Kerri Richardson University of North Carolina - Greensboro Greensboro, NC 27402 kerri_richardson@uncg.edu

MEMBERSHIP CHAIR Sarah Pratt University of North Texas Denton, TX Sarah.pratt@unt.edu

INVESTIGATIONS EDITOR Vicki Schell Penscola State College Pensacola, FL 32526 rcmleditor@cox.net

INTERSECTIONS EDITOR Summer Bateiha Western Kentucky University Bowling Green, KY 42101 summer.bateiha@wku.edu

WEBMASTER Ryan Speer Perrysburg, Ohio rspeer@sbcglobal.net ARCHIVIST William R. Speer Director, UNLV Mathematics Learning Center University of Nevada Las Vegas Las Vegas, NV 89154-3001

william.speer@unlv.edu

CONFERENCE COMMITTEE Thomas Faulkenberry (2012-2015) Texas A&M University – Commerce thomas.faulkenberry@tamuc.edu

Angela Krebs (2012-2015) University of Michigan-Dearborn askrebs@umd.umich.edu

Travis Olson (2013-2016) University of Nevada, Las Vegas travis.olson@unlv.edu

Kansas Conrady (2013-2016) University of Oklahoma Norman, OK Kansas.conrady@Ou.edu

Jonathan Bostic (2014-2017) Bowling Green State University Bowling Green, OH bosticj@bgsu.edu

Sean Yee (2014-2017) California State University - Fullerton Fullerton, CA syee@fullerton.edu

CONFERENCE PROCEEDINGS EDITOR (Appointed) Megan Che Clemson University Clemson, SC 29634 sche@clemson.edu

CONFERENCE PROCEEDINGS CO-EDITOR (Appointed) Keith Adolphson Eastern Washington University Cheney, WA kadolphson@ewu.edu

MEMBERSHIP CHAIR (Appointed) Mary Swarthout Sam Houston State University Huntsville, TX 77341 swarthout@shsu.edu

	Overview of Friday Morning Sessions				
Room	8:00 - 8:45	9:00 - 9:45	10:00 - 10:45	11:00 - 11:45	
Apollo 1	Inservice Teachers Perception of Us- ing Literacy Strategies in Mathemat- ics Carolyn Pinchback, Shoudong Feng	The Mathematical Education of PSTs: A Stroll Through Some Literature Kansas Conrady, Elayne Bowman	Effect Book Type & Teacher Training on Math-Talk During Shared Book Reading Lynn Columba	Momentum: Building Capacity for Change through Connections Ann Assad, Lauren Wells	
Apollo 2	Teaching Secondary Mathematics from Historical and Cultural Per- spectives Roland Pourdavood, Patrick Wachira	Flipping College Algebra to Increase Student Engagement and Achieve- ment Jennifer Clinkenbeard, Cherie Ichi- nose	The Role of Research in Teacher Preparation Daniel Brahier	Using an Emporium Model in Pre- calculus: Lessons Learned and Next Steps Tracey Howell, Carol Seaman	
Apollo 3	Navigating the Video Stream for Mathematics Education Lucas Foster	Conceptual Versus Procedural Approaches to Ordering Fractions Lynda Wiest, Troy Thomas, Frank Amankonah	Building Conceptual Understanding of Fraction Division with Remain- ders. Rebecca Gault, Laura Tapp, Juli Dixon	Is there a relationship between whole number and fraction understanding? Gayle Millsaps	
Apollo 4	Supporting K-10 Teachers' Profi- ciency with the SMPs Jonathan Bostic, Gabriel Matney	Urban teachers' pedagogical changes from CCSSM professional develop- ment Susie Morrissey, Gorjana Popovic, Ozgul Kartal	Supporting an Elementary Teacher Implementing the Common Core State Standar Heather Lockwood, Keith Adolph- son	Investigations Into Teachers' Per- spectives on Mathematical Modeling Cathrine Maiorca, Travis Olson	
Apollo 5	Development of the Draw a Mathe- matics Teacher Test and Rubric Juliana Utley, Stacy Reeder, Adri- enne Redmond-Sanago	Assessing Preservice Teachers' At- titudes toward Mathematics Over Time Cindy Jong, Thomas Hodges	Readin', Ritten', and Rithmetic - NAEP Mathematics and Reading Scores Pat Jordan	Students' engagement, confidence, and use of technology for learning al- gebra Linda Venenciano, Judith Olson, Melfried Olson, Stephanie Capen	
Apollo 6	Impact of Student Understanding of Function on Their Understanding of Limit Taylor Jensen	Trigonometry Students' Conceptions of Variable: x Marks the Spot Ben Wescoatt	Investigations Into Mathematics Teachers' Propositional Logic Capa- bilities Travis Olson, Melfried Olson	Writing as a mode of learning math- ematics: Cognitive and affective as- pects Sarah Ives	
Apollo 7	An Examination of Factors Impact- ing College Algebra Readiness Elizabeth Howell	Middle School Students' Algebraic Reasoning of the Least Common Multiple James Telese, Benjamin Avalos	Understanding Integer and Binomial Multiplication Sarah Pratt, Amie Tennyson	Teacher-Student Interactions in Single-Sex and Coeducational Math Classes Traci L. Carter, S. Megan Che, William C. Bridges, Jr., Dennis Kombe	
Apollo 8		Generating Mathematical Discourse through an Online Platform Tyrette Carter, Kimberly Erwin, Nichole Smith	Learning to Listen-What A Pre- service Teacher Can Learn from an Interview Sandra Trowell	A Learning Trajectory for Transformation-based Reasoning In Geometry Nicole Panorkou, Steven Greenstein	

Overview of Friday Afternoon Sessions				
Room	1:30 - 2:15	2:30 - 3:15	3:30-4:15	
Apollo 1	Differentiated Instruction in a Standards-Based Mathematics Curriculum Carolyn Mitten, Tim Jacobbe	Playing with Math: An Elementary School/University Partnership Elizabeth Ward, Elisabeth Johnston	Using Feedback to Develop 6th grade Math Peda- gogical Content Knowledge Cynthia Orona, Conra Gist, Kelli Dougan, Dennis Beck	
Apollo 2	Learning to Teach Together: A Mathematics Edu- cator & A Pre-Service Teacher Ryan Fox, Nicole Bamford	Using Action Research to support teacher develop- ment Eileen Faulkenberry, Lesley Leach	Influences of OTL and Technology when Learning Functions from a UCSMP Study Laura Hauser	
Apollo 3	Technology, Intermediate Algebra: Effects on Anx- iety, Opportunity to Learn Kenneth Butler, Ruthmae Sears	Co-Teaching Strategies with Pre-Service Teachers to meet InTASC Standards Alan Zollman	VSTEM: Visualizing Science, Technology, Engi- neering, & Mathematics Mary Baker	
Apollo 4	Nevada Ready! Supporting the Transition from HS to (and Through) College William Speer		The Flipped Classroom: What Does the Research Say? Beth Cory	
Apollo 5	SECONDARY MATHEMATICS TEACHERS' DISPOSITION TOWARD CHALLENGE Yirah Valverde	Accepting the Challenge: A case study of CCSS-M implementation Kwaku Adu-Gyamfi, Tony Thompson	K-8 Teachers' Self-Efficacy Beliefs for Teaching Mathematics Frank Amankonah, Lynda Wiest	
Apollo 6	Mathematical Conversations Nancy Cerezo, Sharyn Disabato	Mathematics teachers' beliefs about teaching and learning mathematics Adem Ekmekci, Danya Corkin		
Apollo 7	Perceptions of Mathematics and Gender in Middle School Single-Sex Classroom Dennis Kombe, S. Megan Che, William C. Bridges, Jr.	Studying the Effectiveness of a Pre-K iPad Num- ber Sense Curriculum Jeffrey Shih, Amy Adkins, Lina DeVaul, Charles Allen, Taro Ito	Problem Solving in Preschool: One Program's Alignment to NAEYC and NCTM Elisabeth Johnston, Elizabeth Ward	
Apollo 8	Characteristics of Different Learning Environ- ments in Geometry Classrooms Zhonghong Jiang, Alex White, Brittany Webre	Item Response Theory Analysis Applied to Math Assessment Instruments Jerry Obiekwe	Smoothing The Ups and Downs: Tools for Profes- sional Transitions Kansas Conrady, Jonathan Bostic, Sean Yee, Sarah Ives	

	Overview of Saturday Morning Sessions				
Room	8:00 - 8:45	9:00 - 9:45	10:00 - 10:45	11:00 - 11:45	
Apollo 1	Teachers empowered via personal self-sustaining professional develop- ment Hannah Slovin, Fay Zenigami, Ju- dith Olson, Linda Venenciano	Secondary Mathematics Teacher Preparation: A Collaborative Tetrad Model Jennifer Eli	Creating statewide math initiative by collaboration and design research Teruni Lamberg, Travis Olson, Jef- frey Shih, Ed Keppelman, Peggy Lakey	Collaborative Teaching in a Mathe- matics Classroom Sheila Darker, Kay Wohlhuter	
Apollo 2	IBL in the Mathematical Statistics Class Lanee Young	ELEMENTARY MATHEMATICS TEACHER BELIEFS Brian Evans	Language Acquisition in Mathemat- ics for Struggling Students – What Works Bill Jasper	Do Students with Disabilities have Access to Effective Math Instruction Jeremy Winters, Dovie Kimmins, Craig Rice	
Apollo 3	Reconceptualizing Math Content Courses for Pre-Service Secondary Teachers Brian Gleason, Ryan Fox	Literacy Strategies to Impact Learn- ing in the College Calculus Class- room Tena Roepke, Debra Gallagher	The Core-Math Project: Teacher Ed- ucators Partnering with K-5 Schools Kerri Richardson		
Apollo 4	Video Games = Spatial Abilities = Mathematics Darlinda Cassel, Lana Canale	Cognitive Skills and Mathematics Problem-Solving Performance Ardyth Foster	LOCUS: Assessing Students' and Teachers' Knowledge of Statistics Catherine Case, Steve Foti, Douglas Whitaker, Tim Jacobbe	Examining student achievement when using a modeling approach to algebra Judith Olson, Fay Zenigami, Mel- fried Olson, Hannah Slovin	
Apollo 5	Exploring African American elemen- tary students' mathematical identi- ties Thomas Roberts	What I Learned About Concept Maps on My Summer Vacation Mary Swarthout	How They See it: Pre-service El- ementary Math Majors Images of Their Future Keith Adolphson		
Apollo 6	Multi-mentoring strategies for math teacher preparation and induction Keith Hubbard, Lesa Beverly		The Response of Preservice Teachers to Algebraic Misconceptions of Stu- dents Ayse Tugba Oner, S. Enrico P. Indio- gine, Gerald Kulm, Nickolaus Ortiz, Trina Davis, Haiping Hao	Development of an assessment tool for communicating mathematically Kathy Smith, Molly Weinburgh, Ce- cilia Silva, Natalie Smith	
Apollo 7	Strengthening Prospective Elemen- tary Teachers' Conceptions of Fac- tors Ziv Feldman, Matt Roscoe	The Impact of a Two Year Pro- fessional Development Program on Math Teachers Sue Brown	The challenges and possibilities of the edTPA Tony Thompson, Kwaku Adu- Gyamfi, Maureen Grady	Empowering Ownership of Proof with Communal Proof-Writing Cri- teria Sean Yee, Boyle Justin, Winnie Ko, Sarah Bleiler	
Apollo 8	Advancing Additive Reasoning with Second Differences Nathaniel Phillips, Catherine Ulrich	A Second grader's understanding of negative numbers Seungoh Paek, Daniel Hoffman	Bridging the algebra gap: Effects of an online summer math refresher Jodi Frost, Nicole Bailey , Eric Graves, Ellie Pounds	The 30 Second Challenge: Improving Preservice Computational Fluency Rachel Bachman, Dixie Blackinton	

Reflections on Mathematics Learning **Overview of Saturday Morning Sessions**

The Influence of Beliefs on	Five Pre-service Teacher's SCK	Room: Zeus
Deve	elopment	Time: 4:30-5:30
Vecihi Zambak	Clemson University	vzambak@g.clemson.edu
With the introduction of Mathematica	al Knowledge for Teaching (Ball, Thames &	Phelps, 2008) into the lexicon for
mathematics education, mathematics	teachers are expected to develop a subject	-matter knowledge special to the
	ntent Knowledge (SCK). Even though SCK a	
way to support the development of this	knowledge during teacher education is not cl	ear. In this case study, I examined
the SCK development of five pre-service	e teachers' SCK development with Geometer	r's Sketchpad during three clinical
interviews. Teachers' beliefs about ma	thematics, teaching and technology were hyp	othesized to be factors influencing
the impact of technology on knowled,	ge development. Results indicated that tea	chers with Platonic beliefs about
	bout teaching with an emphasis on conceptu	
beliefs about technology developed th	eir SCK more than teachers having other ty	vpe of beliefs about mathematics,
teaching and technology.		

Community Collogo Studer	at Perspectives and Experiences with PBL	Room: Zeus	
Community Conege Studen	it respectives and Experiences with r DL	Time: 4:30-5:30	
Rachel Bates	Redlands Community College	rachel.bates@redlandscc.edu	
Despite the various forms of rese	earch that has highlighted the cognitive understan	ding of how mathematical knowl-	
edge is acquired and utilized, s	tudents typically experience mathematics through	h years of fragmented encounters	
leading them to believe that ma	thematics is comprised of meaningless symbols, m	emorizing inflexible formulae and	
procedures, and exercises far re-	emoved from their own interests. This pervasive	manner of teaching mathematics	
undermines meaningful learning	s. Students who were previously unsuccessful in le	arning "drill-and-skill" algorithms	
are basically presented with the	same instructional approach yet again. The metho	ds that failed to develop students'	
mathematics understanding in l	mathematics understanding in PK-12 are found to be unsuccessful for most of the students in community college.		
Although there is a plethora of	research on reform based statistics, there is little	research on the perspective of the	
problem based learner in colleg	e level introductory statistics courses. The purpe	ose of this study was to describe,	
through a phenomenological app	proach; the characteristics of a non-traditional intro	oductory statistics course designed	
for undergraduate students, app	proaches to learning statistical concepts as the st	udent engaged in problem based	
learning activities and to focus of	on the perceived student learning experiences and	emerging statistics understanding	
as a result of engaging in variou	s problem based learning activities within the cou	rse.	

Assessing Children's Number	Understanding through a Web-Based	Room: Zeus
:	System	Time: 4:30-5:30
David Pugalee	Center for STEM Education, UNC Char-	david.pugalee@uncc.edu
David I ugalee	lotte	david.pugalee@uncc.edu
This paper reports on the effectiveness of a professional development project Assessment Practices to Support Math-		
ematics Learning and Understanding	for Students (APLUS). The project assists the	e implementation of an assessment
model in grades K-3, with the accen	t on providing teachers in K-2 with the skills	and knowledge to effectively use
a web-based assessment system focusing on elementary number understanding. Though no statistically significant		
differences between the student treatment group and student control group were revealed, the average performance		
for classroom and school were found to have significant impacts on student performance and the connection between		
performance and time passed from the beginning to the end of the use of the assessments.		

The evolution of PSTs' belief	fs: Examining the effect of teacher	Room: Zeus		
pre	paration	Time: 4:30-5:30		
Eileen Faulkenberry	Tarleton State University	efaulkenberry@tarleton.edu		
Kathy Smith	Tarleton State University	ksmith@tarleton.edu		
Beth Riggs	Tarleton State University	eriggs@tarleton.edu		
Thomas Faulkenberry	Tarleton State University	faulkenberry@tarleton.edu		
Pre-service teachers at this regional university take a series of 3 mathematics education courses during their teacher				
preparation experience. This study will examine how the pre-service teachers' beliefs change over the course of these				
three semesters. Data includes qualitative and quantitative measures collected throughout the semesters.				

(social-constructivist approach).

directions for possible future research will be discussed.

Korean Secondary Ma	th Teachers' Understanding of Formative	Room: Zeus	
	Assessment	Time: 4:30-5:30	
Sun Hee Lee	University of Illinois at Urbana- Champaign	lee771@illinois.edu	
My dissertation research was	conducted to learn about twelve Korean seconda	ry math teachers' understanding	
of formative assessment. Cor	nducting semi-structured interviews and qualitative	data analysis, I investigated the	
following: (a) Korean seconda	ry math teachers' understanding of formative assess	ment; (b) social, educational, and	
policy contexts that affect how	policy contexts that affect how teachers implement formative assessment practices; and (c) how teachers learn about		
formative assessment. Korean teachers were able to distinguish between formative and summative assessments.			
They demonstrated a wide range of formative assessment strategies, which were clustered around three practices			
of DAP (elicit, interpret, and use assessment information). Teachers were systemically involved in professional			
development programs based on institutes and school districts, which helped them adopt new educational policies			
into their practice. Because literature documents that there is a gap between teachers drawing inference about student			
learning and planning further instructional steps based on the evaluation, teachers' formative assessment knowledge			
was captured through three tasks. Teachers examined students' written work on two-digit multiplication problem			
and part-whole comparison of fractions, and examined scenarios of a lesson on the law of exponents. One scenario			
represents convergent formati	ive assessment (traditional approach) and the othe	r divergent formative assessment	

Students' Mathematics-Related	Beliefs and STEM Model-Eliciting	Room: Zeus
Ac	tivities	Time: 4:30-5:30
Cathrine Maiorca	University of Nevada, Las Vegas	cemaiorca@icloud.com
The mathematics and mathematics-rel	ated beliefs that have been cultivated in the	traditional classroom setting need
to change in order for students to fully	participate in the age of information. In this	s new age, mathematical thinking
is no longer just computations, it is a	lso the ability to construct, describe and ex	xplain phenomena, i.e. modeling.
One way to change mathematics-relat	ed beliefs is through integrated STEM mode	el-eliciting activities. The purpose
of this presentation is to discuss a stu	idy on students' mathematics-related beliefs	s and how they are influenced by

model-eliciting activities. In this presentation the initial findings of a qualitative case study will be examined and

Developing Product	vive Disposition in Struggling Mathematics	Room: Zeus
	Students	Time: 4:30-5:30
Maureen Grady	East Carolina University	gradym@ecu.edu
This presentation will look at evidence from classroom observations and student interviews that high school students		
with a history of poor succ	ess in mathematics can develop a productive dispositi	on towards mathematics. We will
examine evidence of the wa	ays in which these students have come to see mathe	ematics as connected and sensible
and have come to believe t	that their efforts can help them to be successful in m	athematics. We will then look at
instructional practices that	seem to influence the development of this disposition.	

Getting Virtual: Exploring th	e Benefits and Challenges of using	Room: Zeus
Sec	ond Life	Time: 4:30-5:30
Glenn Phillips	Texas A&M University	glennallenphillips@gmail.com
Through a five-year National Science	Foundation grant, the Knowledge for Algel	bra Teaching for Equity (KATE)
team has used Second Life, a virtual	environment, to give middle-grade, pre-ser	vice teachers an extra-curricular
teaching experience. Students respond	d well to "real" teaching opportunities that p	place students directly in front of
middle-grade students. However, apa	rt from some methods courses and student	teaching semesters, it is difficult
(and sometimes irresponsible) to put	unprepared pre-service teachers in control of	f classrooms. Second Life offers a
"risk-free" zone where pre-service tead	thers can prepare a lesson, consider the cont	text of their classroom, present a
lesson, follow through with practice, at	nd reflect on their experience with little liabil	ity and never leaving the campus.
Additionally, operating Second Life as	s an instructor or avatar student gives pre-se	ervice teachers more training and
comfort with the virtual platform, wh	ich will, in its present form or another, one o	day be common in all classrooms.
This presentation considers the benefit	ts of teaching and tutoring in Second Life, e	explores the ways KATE has used
Second Life, and suggests how future	classrooms could adapt the training program	n and protocol used in KATE.

Teacher Application of Questioning in Contextualizing Algebraic		Room: Zeus
Functions		Time: 4:30-5:30
Eloise Kuehnert	University of North Texas	eloise.kuehnert@unt.edu
Sarah Pratt	University of North Texas	sarah.pratt@unt.edu
This proposal aims to outline the app	lication of teacher questioning of two middle	e school teachers within a contex-
tualized algebra lesson. The connecti	on between a teachers' MKT and the qual	ity and nature of questioning, as
measured by AssessToday [©] (Eddy & Harrell, 2012), will be examined. During a summer professional development,		
participants attended Six Flags over Texas to collect data then followed with a 5E lesson involving Hot Wheels (©		
tracks that would emulate their roller coaster experiences. A pre-interview will be conducted before the observation		
followed by a post-interview. Prelimin	ary findings and future plans will also be in	cluded in the display.

Significantly Traumatized Children in the Mathematics Classroom		Room: Zeus Time: 4:30-5:30
Jared Williams	Spokane Public Schools	JaredW@spokaneschools.org
Keith Adolphson	Eastern Washington University	kadolphson@ewu.edu
This preliminary study explored the connection between students who had experienced significant childhood trauma		
and subsequent mathematics learning. The purpose of this project was to observe the behavior and responses of		
traumatized middle school students immersed in a problem-centered mathematics learning environment that was		
intentionally designed to address their needs. Preliminary results suggest positive growth was observed in each		
students' willingness to explore mathematics, ability to determine what they were capable of, ability to communicate		
their needs, apparent motivation, or positive affective responses such as enthusiasm and attitude.		

Early Childhood Gender Differences in Number Sense When Learning		Room: Zeus
with iPads		Time: 4:30-5:30
Amy Adkins	University of Nevada, Las Vegas	adkinsa5@unlv.nevada.edu
Jeffrey Shih	University of Nevada, Las Vegas	jshih@unlv.edu
Lina DeVaul	University of Nevada, Las Vegas	zangl@unlv.nevada.edu
Taro Ito	University of Nevada, Las Vegas	taro@unlv.nevada.edu
Charles Allen	University of Nevada, Las Vegas	cmallen@unlv.nevada.edu
iPads offer a new and engaging platform for young children to learn mathematics. In this poster presentation,		
attendees will learn how a progressive set of number sense intervention apps impacted the learning of early childhood		
number sense development. Specific skills of number sense such as the ability to identify numbers, order numbers,		
match quantities to numbers, subitize numbers, and compare quantities will be examined with respect to gender.		

Results will be shared and the progress of girls and boys will be discussed.

Assessing Pre-service Mathematics Teachers' Misunderstanding of		Room: Zeus
Probability		Time: 4:30-5:30
Lina DeVaul	University of Nevada, Las Vegas	zangl@unlv.nevada.edu
The purpose of this study is to asses	s the misunderstandings of probability that	t pre-service math teachers have
when solving the Monty Hall Problem. Thinker-Doer Pair Activity (Hart, Schultz, & Najee-ullah, 2004) and six type		& Najee-ullah,2004) and six types
of Socratic questions (Paul & Elder, 2006) were used as diagnose tools. Two g		raduate students who enrolled in
secondary mathematics education course participated in this study. Findings showed that participants had solid		
probability calculation process knowledge; however, participants didn't understand or accept the Law of Large		
Numbers; participants also stronger belief on logical reasoning conclusion (for example, game theory) than		xample, game theory) than their
belief on probability calculation result.		

High School Predictors of	College Mathematics Readines	Room: Zeus Time: 4:30-5:30	
Ryan Hale	Barry University	ryan.hale@mymail.barry.edu	
Research on the relationship between	socioeconomic status and educational outco	mes of students is abundant, but	
research related into factors that are	capable of mediating the effects of poverty	y on the education of children is	
limited. The high school longitudina	l study of 2009 (HSLS:09) collected data fr	om over 21,000 ninth grade high	
school students, related to the education	tional and social experiences of students. D	ata were also linked to students'	
performance on a mathematics assess	performance on a mathematics assessment. The present study used HSLS:09 data to identify factors that predict		
mathematics performance above and beyond socioeconomic level, in order to provide educators of impoverished			
children direction in terms of tackling the issue of mathematics competency. Two such factors were identified to			
have a significant level of predictive power over and above socioeconomic level; future plans for math achievement,			
and parental influence. Of these two factors. future math plans has the greatest ability to predict achievement			
in mathematics over and above socioeconomic level. These findings shed light on the importance of providing low			
socioeconomic level students with op	portunities to understand the importance	of mathematics in order to plan	
for future mathematics coursework.	The need to increase parental involvement	in educational endeavors is also	
underscored. Key Words: At-risk, ma	thematics achievement, low socioeconomic le	evel, poverty.	

Inservice Teachers Perceptio	n of Using Literacy Strategies in	Room: Apollo 1
Mat	hematics	Time: 8:00-8:45
Carolyn Pinchback	University of Central Arkansas	carolinp@uca.edu
Shoudong Feng	University of Central Arkansas	sfeng@uca.edu
This presentation is based upon a project funded in part by a federal grant under Title II Part B of the No Child		
Left Behind Act (P.L. 107-110) admi	nistered by Arkansas Department of Educa	tion. The goal of this project is
to increase the level of content knowledge and skills in STEM areas by integrating science, technology, engineering		
and mathematics with literacy programs. Thirty teachers participated in a professional development course that		
integrated science, mathematics, literacy, and technology for elementary/middle level teachers from the central part		
of the state. The focus of this presentation will be the literacy strategies that were presented to the teachers in the		
instruction of mathematics. The speal	kers will also share the teachers' comments a	about the strategies.

Teaching Secondary Mathematics from Historical and Cultural		Room: Apollo 2
Perspectives Roland Pourdavood Cleveland State University		Time: 8:00-8:45 r.pourdavood@csuohio.edu
Patrick Wachira	Cleveland State University	p.wachira@csuohio.edu

Perspectives on Science and Mathematics is a new course development for prospective secondary mathematics and science teachers. The course explores a selection of topics and episodes in the history of science and mathematics. The specific objectives and expectations are part of four broad, interlocking goals: (1) provide an overview of history of science and mathematics; (2) enable future teachers to enact these historical perspectives and contexts throughout their pedagogy; (3) promote intellectual curiosity and sharpen critical thinking skills; and (4) improve presentation and writing skills. By developing, preparing, and teaching mathematics and science lessons at the intermediate and secondary school settings in historical contexts, the interns will have a better appreciation of teaching profession. We will share our two years of experience working with prospective mathematics and science teachers. The conference participants will have opportunities to reflect and share their ideas and perspectives relative to the proposed presentation.

Navigating the Video Stream for Mathematics Education		Room: Apollo 3
Travigating the video Stream for Mathematics Education		Time: 8:00-8:45
Lucas Foster	Northeastern State University	fosterlb@nsuok.edu
The effectiveness and value of video presentations in the mathematics classroom has long been researched an		m has long been researched and
debated, with disparate results. This paper examines the results of incorporating videos into a mathematics education		
classroom, including the benefits and pitfalls that exist when attempting to utilize video streaming as part of the		
course curriculum.		

Supporting K-10 Teachers' Proficiency with the SMPs		Room: Apollo 4 Time: 8:00-8:45
Jonathan Bostic	Bowling Green State University	bosticj@bgsu.edu
Gabriel Matney	Bowling Green State University	gmatney@bgsu.edu
The aim of this session is to share key f	eatures and research evidence of the impact to	wo PD programs, which supported
teachers to provide students more frequent - and richer - opportunities to engage in the Standards for Mathematical		
Practice. The two PD programs were designed for teachers in different geographical locations; one program supported		
elementary teachers while the other secondary teachers. Within these programs, teachers videotaped their instruction		
at the beginning and end of this yearlong PD. Evidence of students' engagement in the Standards for Mathematical		
Practice was analyzed using a protocol (Fey, Kobett, Wray, 2013). Results of this analysis and videos of mathematics		
teachers' pre- and post-PD instruction will be shared for discussion. We will synthesize our session by exploring		
implications for mathematics-focused Common Core State Standards PD and instruction.		

Development of the Draw a Mathematica Teacher Test and Pubric		Room: Apollo 5
Development of the Draw a Mathematics Teacher Test and Rubric		Time: 8:00-8:45
Juliana Utley	Oklahoma State University	juliana.utley@okstate.edu
Stacy Reeder	University of Oklahoma	reeder@ou.edu
Adrienne Redmond-Sanago	Oklahoma State University	adrienne.redmond@okstate.edu
The use of drawings is one way of examining personal beliefs. Given the potential for launching reflection on and		
a discussion about the impact of personal beliefs on one's teaching mathematics, we will discuss the development		
of the Draw a Mathematics Teacher Test and rubric for assessing the mental models or images held by preservice		
teachers. Additionally, we will share samples of preservice teachers' drawings. Attendees will be encouraged to		
provide feedback on the scoring rubric.		

Impact of Student Understanding of Function on Their		Room: Apollo 6
Understa	nding of Limit	Time: 8:00-8:45
Taylor Jensen	Western Governors University	tajknight@gmail.com
Since the concept of limit in introduc	tory calculus usually concerns a process app	lied to a single function, it seems
reasonable to believe that a robust un	derstanding of function is beneficial to and pe	erhaps necessary for a meaningful
understanding of limit. In order to n	easure the strength of the correlation betwee	en understanding of function and
understanding of limit, two tests—th	e Precalculus Concept Assessment (PCA) to	measure function understanding
and the Limit Understanding Assessment (LUA) to measure limit understanding—were administered to stude		—were administered to students.
Correlations between students' PCA scores and students' LUA scores were calculated, as were correlations between		ted, as were correlations between
students' PCA scores and students' scores on particular subcategories of limit understanding measured by the		
LUA. The relative strength of the computed correlation coefficients as well as graphical scatterplots of the result		aphical scatterplots of the results
provide useful insights as to the nature of the relationship between students' understanding of function and th		derstanding of function and their
understanding of limit. Based on these results, it is concluded that understanding of function is a significant predic		f function is a significant predictor
of future understanding of limit. Recommendations for practicing mathematics educators and indications for fu		ucators and indications for future
research are provided.		

An Examination of Factors Impacting College Algebra Readiness		Room: Apollo 7
An Examination of Factors Impacting College Algebra Readiness		Time: 8:00-8:45
Elizabeth Howell	Southern Methodist University	ehowell@smu.edu
Nationally, many students entering h	igher education via community colleges are	e under-prepared for college level
mathematics courses. Many commun	nity college students require developmental	mathematics coursework prior to
becoming eligible to enroll in credit	math courses such as College Algebra. A	dditionally, many students have
difficulty successfully completing the	sequence of developmental courses, and as a	result success in College Algebra
is increasingly difficult to obtain. Recent education initiatives suggest that acceleration through the developmenta		
sequence is a promising model for students, as well as the practice of mainstreaming developmental students into		
credit mathematics courses with addi	tional supplementary support. Yet little evic	lence exists to support that these
models are effective at scale for most students struggling with college mathematics. By examining longitudinal data		s. By examining longitudinal data
for a cohort of community college mathematics students over a five year period, we are examining rich information		
as to what paths through developmental math courses were most successful for students requiring remediation. Non		
academic factors such as race/ethnici	ty, SES, gender, language background, previ	ous math coursework, SAT/ACT
test scores, and measures of engager	nent in the college will be considered as pe	otential moderators on successful
completion of College Algebra throug	h one of these paths.	

The Mathematical Education of PSTs: A Stroll Through Some		Room: Apollo 1
Literature		Time: 9:00-9:45
Kansas Conrady	University of Oklahoma	kansas.conrady@ou.edu
Elayne Bowman	University of Oklahoma	ewbowman@ou.edu
Despite the model one may select, it	is becoming widely recognized that one mu	ist know more than just a set of
standard algorithm and procedures in order to successfully teach mathematics. While the Mathematical Knowledg		hile the Mathematical Knowledge
for Teaching Framework (MKT) has labeled additional types of necessary know		vledge (Ball, Thames, & Phelps,
2008), the Conference Board for Mathematical Sciences (CBMS) provided a series of recommendations for how the		of recommendations for how this
knowledge should be obtained in the Mathematical Education of Teachers II (CBMS, 2010). The six recommendation		
presented in METII were used as a framework to explore current literature and provide insight on the overal		
effectiveness of this framework on the development of future teachers of mathematics. Findings and suggestions		tics. Findings and suggestions for
future studies as described in this literature will be shared.		

Flipping College Algebra to Increase Student Engagement and		Room: Apollo 2
Achievement		Time: 9:00-9:45
Jennifer Clinkenbeard	California State University Fullerton / Claremont Graduate University	jclinkenbeard@fullerton.edu
Cherie Ichinose	California State University Fullerton	cichinose@fullerton.edu
The flipped learning environment blen	ds the innovation of online learning with stud	dent centered face-to-face instruc-
tion. In this session, we present a pil	ot study comparing a flipped college algebra	a class with a traditional lecture.
The data were gathered in spring and summer of 2014. The model for the flipped class engages the student on the		class engages the student on three
distinct occasions: online modular mini-lectures with embedded questions; a pre-assessment; and an in-person ma		ssessment; and an in-person math
lab discussion facilitated by the professor. Using a pre- and post-test method, we employ standardized assessme		employ standardized assessments
and rubrics in both course models to compare both academic and affective domains. Preliminary findings suggest		
that the passing rates for students in the flipped model were statistically higher than students in the traditional		
class (t = 3.701 , df = 650 , p <.001). In addition to comparing the grades of individual students in each classroom		
model on each major exam as well as their final course grade, we also consider the change in content mastery as		
demonstrated by the student via the Mathematics Diagnostic Testing Project; the change in reported mathematic		change in reported mathematical
beliefs via the 2012 Programme for International Student Assessment; and the comparison of responses with r		nparison of responses with regard
to the class setting.		

Conceptual Versus Procedural Approaches to Ordering Fractions		Room: Apollo 3 Time: 9:00-9:45
Lynda Wiest	University of Nevada, Reno	wiest@unr.edu
Troy Thomas	University of Nevada, Reno	troysailer@yahoo.com
Frank Amankonah	University of New Mexico-Gallup	amankona@unm.edu
This paper reports the performance	of 30 rising seventh-grade girls on a task in	which they were asked to order
four fractions from least to greatest.	Less than three-fifths attained correct ans	wers. The performance gap was
widest between students who attended Title I schools and those who did not, the latter being much more likely t		latter being much more likely to
attain correct answers. The achievement gap was less prominent by race/ethnicity, family socioeconomic status, and		
community type (suburban/urban versus rural). Participants tended to use procedural and conceptual approach		dural and conceptual approaches
equally, but conceptual approaches were more successful. The most common procedural strategy was converting		
fractions to equivalent fractions, and the most common conceptual strategy was making drawings that illustrated		
part-whole concepts. The most problematic fractions to place in order of relative size were the two middle fractions,		
which were somewhat closer to each other in size than other adjacent pairs and were farthest from the benchmarks		
of 0 or 1. Based on these and other research findings, we conclude that it would benefit students to possess a greater		
repertoire of specific strategies, especially conceptual strategies such as the use of number lines, benchmarks, and		
set models, for working with fractions.		

Urban teachers' pedagogical o	changes from CCSSM professional	Room: Apollo 4
development		Time: 9:00-9:45
Susie Morrissey	Illinois Institute of Technology	gmorriss@hawk.iit.edu
Gorjana Popovic	Illinois Institute of Technology	gorjana.popovic@gmail.com
Ozgul Kartal	Illinois Institute of Technology	ozgulkartal@gmail.com
Professional development (PD) was	provided at the end of the 2013-14 school	year to high school teachers on
examples of mathematics problems for	each of the Common Core Mathematical Pra	actices (MP), as well as discussion
on determining when and how mathe	matics problems meet the standards set for	th in the MP. PD on converting
existing problems to meet CCSSM and on observing MP in students was provided to the teachers in the fall and		ed to the teachers in the fall and
throughout the first semester. Teachers also received mentoring on additional ways to include MP. Teachers wer		ys to include MP. Teachers were
observed at the beginning of semester one and again at the end of semester one, and completed self-assessments of		
their use of MP before each observation. Researchers also completed these assessments, during each observation.		
Teachers involved in this study include high school mathematics teachers from charter schools in a large urban		
district. Data sources include teacher self-assessments and researcher assessments of teachers use of MP at the		
beginning and the end of semester one. Assessments were examples of where in each lesson each of the eight MP was		
expected to be evident (teacher self-assessment) or was observed (researcher assessment of teacher). Researchers will		
present a comparison of teacher self-assessments and researcher assessments of teachers use of MP at the beginning		
of semester one with those assessments completed at the end of semester one.		

Assessing Preservice Teachers' Attitudes toward Mathematics Over		Room: Apollo 5
Time		Time: 9:00-9:45
Cindy Jong	University of Kentucky	cindy.jong@uky.edu
Thomas Hodges	University of South Carolina	hodgeste@mailbox.sc.edu

This presentation reports on the development of attitudes toward mathematics among preservice elementary teachers (n=146) in relation to their experiences as K-12 learners of mathematics and experiences within a teacher education program. Using the Rasch Rating Scale Model and parametric analyses, results indicate that significant changes in attitudes occurred over the duration of mathematics methods coursework and student teaching. Further, these changes can be explained, in part, by various teacher education experiences. In particular, having a student teaching experience with meaningful mathematics instruction played a significant role for those who entered with negative attitudes toward mathematics. The Mathematics Experiences and Conceptions Surveys (MECS) will also be discussed as instruments for studying teacher development, evaluating teacher education programs, exploring teaching experiments, and understanding factors influencing preservice teachers' conceptions.

Trigonometry Students' Conceptions of Variable: x Marks the Spot		Room: Apollo 6	
rigonometry students' Conceptions of Variable: x Marks the Spot		Time: 9:00-9:45	
Ben Wescoatt	Valdosta State University	bmwescoatt@valdosta.edu	
Developing a robust understand	ling of the symbols of algebra is an important cogn	itive step for students transitioning	
from arithmetic to algebra (Hers	scovics & Linchevski, 1994). While students' concep	otions of literal symbols, generically	
called variables, become more s	ophisticated with experience (Knuth, Alibali, Mcl	Neil, Weinberg, & Stephens, 2005),	
high school and college studen	ts appear to still hold weak conceptions, inhibit	ing problem-solving efforts (Gray,	
	Loud, & Sokolowski, 2009; Trigueros & Ursini, 2003; Ursini & Trigueros, 2004). Utilizing a semiotic analysis, this		
current study explores college students' conceptions of variable as manifested while verifying trigonometric identities			
Although students generally viewed a variable in the function argument as a general number, many students did so			
by either mentally replacing or	overwriting the argument with a preferred letter,	usually x, the prototypical variable	
(Knuth, Alibali, McNeil, Weinb	erg, & Stephens, 2005). While doing so facilitated	the verification of the identity, the	
dependence on the letter x as a default variable inhibited some students from recognizing identities; additionally, the			
referent for the symbol became conceptually vague and problematic. The talk will share analyses of interviews and			
student work in addition to discussing frameworks of variable conceptions and how activities involved in verifyin			
identities and general mathema	tics possibly influence the development of variable	e conceptions.	

Middle School Students' Algebraic Reasoning of the Least Common		Room: Apollo 7
Multiple		Time: 9:00-9:45
James Telese	University of Texas, Brownsville	James.telese@utb.edu
Benjamin Avalos	Education Service Center, Region One	bavalos@bisd.us
This paper will present the result of	a problem solving activity designed to elicit	it students' understanding of the
Least Common Multiple. The task was given to bilingual middle school students. Content analysis revealed various		
strategies and depth of understandings, from simplistic approaches to more complex thinking strategies related to		
the Least Common Multiple. Student work samples will be presented to illustrate		the range of algebraic reasoning.

Generating Mathematical Discourse through an Online Platform		Room: Apollo 8
Generating Mathematical Discourse through an Online Platform		Time: 9:00-9:45
Tyrette Carter	North Carolina A&T State University	tscarte1@ncat.edu
Kimberly Erwin	North Carolina A&T State University	kderwin@ncat.edu
Nichole Smith	North Carolina A&T State University	nlsmith2@ncat.edu

Communication benefits the growth of students at all ages. Thompson and Chappell (2007) suggest that communication helps students develop their mathematical literacy. Also, Vygotsky (1978) stated that social interaction plays an important role in children's cognitive development. Expecting students at the K-12 level to interact and clearly articulate their thinking to the teacher and their peers can be an overwhelming to a teacher, in particular a beginning teacher. However, providing future teachers with the skills necessary to facilitate this level of discourse can also be challenging. Equipping online candidates/pre-service teachers with the same skill set can be a daunting task. This proposal supports the goals of RCML because it provides research and rich discussion on issues that affect mathematics teaching and learning and how these issues have increased due to online platforms. The purpose of this presentation is to explain how discourse is facilitated through a purely online program with pre-service vs. in-service Elementary Education Teachers the advantages and disadvantages.

The Role of Research in Teacher Preparation		Room: Apollo 2 Time: 10:00-10:45
D 1 D 1		
Daniel Brahier	Bowling Green State University	brahier@bgsu.edu
Science and Math Education in ACTION is a scholarship program designed to enhance the preparation of mathemat		nce the preparation of mathemat-
ics teachers. The program offers extensive research and community internship opportunities for pre-service teacher		
and prepares them to be teacher-researchers. The voices of the students themselves will be presented at this session		
with the intent to engage the audience in a conversation about the role of research in teacher preparation. Some		
results of the impact of this program will also be presented for discussion.		

Building Conceptual Understanding of Fraction Division with		Room: Apollo 3
Remainders.		Time: 10:00-10:45
Rebecca Gault	University of Central Florida	rebecca.gault@knights.ucf.edu
Laura Tapp	University of Central Florida	Laura.tapp@knights.ucf.edu
Juli Dixon	University of Central Florida	juli.dixon@ucf.edu
Our presentation describes how pre-se	ervice teachers in our study developed content	knowledge about fraction division
with remainders. The study highlights the role of student led learning in a discou		urse rich environment designed to
encourage productive struggle leadin	g to deepening conceptual understandings of	fraction division with remainders.
Attendees should leave our presentation with a description of how pre-service teachers in this study developed		teachers in this study developed
content knowledge about fraction division with remainders. We believe that studies focused on how pre-service		
teachers make sense of mathematical ideas will guide mathematics educators when they prepare their content classes		
Furthermore, pre-service teachers who participate in conceptual rich mathematics courses should be able to facili		courses should be able to facilitate
the development of conceptual understanding of mathematics in their students.		

Supporting an Elementary Teacher Implementing the Common Core		Room: Apollo 4
State Standar		Time: 10:00-10:45
Heather Lockwood	Eastern Washington University	hlockwood86@gmail.com
Keith Adolphson	Eastern Washington University	kadolphson@ewu.edu
Elementary Mathematics Specialist (H	EMS) certifications have been established in m	ore than half of the states around
the country. This presentation describes and discusses an action research project of a graduate student/certified		
teacher serving as a de facto EMS/m	nathematics coach for a fifth grade teacher i	n a suburban elementary school.
The goal of the project was to help	the teacher negotiate the implementation o	f the Common Core State Stan-
dards for Mathematics (CCSSM). Coaching efforts focused on dissecting and analyzing the CCSSM, problematizing		
mathematical tasks, and nurturing the teacher's ability to foster mathematical discourse and alter the sociomath-		
ematical norms of the classroom. Project results will be addressed from multiple perspectives, the EMS/coach		
subject teacher, and the teacher's students.		

Readin', Ritten', and Rithmetic - NAEP Mathematics and Reading	Room: Apollo 5
Scores	Time: 10:00-10:45
Pat Jordan Oklahoma State University	patricia.jordan@okstate.edu
The latest NAEP results indicate that minority students are making progress in	their knowledge of mathematics
when compared to their white counterparts. The gap between the groups remains	as wide. Perhaps answers to the
question, What other influences might be responsible for the discrepancies among t	he scores? Is there a relationship
between students' scores on the Mathematics portion of the test and their scores on the Reading portion of the test?	
This statistical analyses research will report on the links between the content score	es on the current NAEP Report.

Investigations Into Mathematics Teachers' Propositional Logic		Room: Apollo 6
Capabilities		Time: 10:00-10:45
Travis Olson	University of Nevada, Las Vegas	travis.olson@unlv.edu
Melfried Olson	University of Hawaii at Manoa	melfried@hawaii.edu

This paper describes the responses of preservice and in-service secondary mathematics teachers related to a question involving propositional logic. This session will present the question the teachers were asked to solve and provide quantitative data regarding their solutions and qualitative data relative to the reasoning behind their solutions. Background for this research is situated in three constructs, mathematical knowledge for teaching, context of proof in psychological and mathematical reasoning, and connections to the Standards of Mathematical Practice 2 (reason abstractly), 3 (construct viable arguments), and 7 (look for structure). Over 50 participants were given a prompt with a set of four cards placed face up. They were told each card contained either a circle or star on one side, and either a triangle or square on the other side. Participants were asked to determine which card(s) from a selection of four must be turned over to verify the statement "Every card with a star on it has a triangle on it." From the mathematics they previously studied one would assume the prospective teachers had the background to examine the question and create an abstract symbolic representation that could be used to identify the correct cards. Data from the choices made by the prospective teachers will be provided along with examples of the reasoning used to justify these choices. We will end with a discussion of the implications related to the three constructs.

Understanding Integer a	and Binomial Multiplication	Room: Apollo 7 Time: 10:00-10:45
Sarah Pratt	University of North Texas	sarah.pratt@unt.edu
Amie Tennyson	Hurst Euless Bedford ISD	AmieTennyson@hebisd.edu
The researchers of this study collected	d and analyzed a series of design experime	nts multiplication and division of
	vice middle grades mathematics teachers.	
maintained across three distinct design experiments were: 1) How does a prospective middle grades mathematics		
teacher conceptualize multiplication of integers and polynomials?; and, 2) How does that knowledge change? Over		
time, some adaptations occurred as to how questions are asked as well as how tasks are scaffolded. Regardless,		
two consistent findings emerged. First, participants were limited in their understandings of why a negative times		
a negative equals a positive, and, second, participants struggled with binomials and connecting them to real-life		
applications. During this session we will engage in the mathematics through hands-on activities then the researchers		
will share findings from our design experiment. We will conclude with conversations about the concepts as well as		
conclusions to be drawn from the data	a and what that could mean for future resea	rch.

Learning to Listen-What A Pre	-service Teacher Can Learn from an	Room: Apollo 8
Int	cerview	Time: 10:00-10:45
Sandra Trowell	Valdosta State University	strowell@valdosta.edu
Understanding and making sense of st	udents' mathematics learning is an essential	part of negotiating a rich math-
ematics learning environment. Pre-se	ervice teachers were asked to conduct clinic	cal interviews with P-8 students.
Listening to students rather than teach	hing or correcting, and making sense of a stu	dents' mathematics was to be the
focus of this assignment. This presentation will discuss what students learned about listening to students, assessing		
students, and choosing appropriate ma	athematics tasks.	

Momentum: Building Capacit	y for Change through Connections	Room: Apollo 1
Momentum Dunung capacity	y for change through connections	Time: 11:00-11:45
Ann Assad	Austin Peay State University	assadd@apsu.edu
Lauren Wells	Austin Peay State University	wellsl@apsu.edu
The goal of Momentum: Building Ca	pacity for Change through Connections was	s to increase student achievement
by increasing elementary teachers' capacity to teach mathematics in a STEM-centered environment using children's		
literature. This professional development program, funded through Tennessee's Race to the Top grant, took a		
problem-solving approach to learning mathematical content as well as pedagogy. Teams from seven schools in four		
school districts completed the program, 27 elementary teachers. The program included 17 eight-hour professional		
development days spread over 18 months. During workshops, participants solved mathematics problems emerging		
from children's literature and from real life situations. They planned lessons based on these problems, often making		
connections to topics from science. They then taught those lessons and shared student work samples in subsequent		
workshops in grade level groups. To support their classroom activities, participants received sets of children's		
literature, software, professional memberships, and conference attendance. Online activities targeted specific topics		
such as using software, reviewing curriculum, and designing lessons. Pre- and post-assessment data, along with		
artifacts such as tancher and student u	work complex revealed significant increases in	participante' content knowledge

artifacts such as teacher and student work samples, revealed significant increases in participants' content knowledge, problem solving ability, and confidence in their ability to plan significant mathematical experiences for children.

Using an Emporium Model in Pr	ecalculus: Lessons Learned and Next	Room: Apollo 2
S	Steps	Time: 11:00-11:45
Tracey Howell	UNCG	thhowell@uncg.edu
Carol Seaman	UNCG	ceseaman@uncg.edu
Our goal for the presentation is to en	gage participants in discussions around the	successes and challenges of using
an Emporium model of instruction in a	our undergraduate Precalculus classes, which	serve as the introductory mathe-
matics course for STEM majors. In the mathematics classrooms of colleges and universities across the United States,		
the Emporium model of instruction has become a popular alternative to traditional lecture courses for introductory-		
level mathematics classes. These blended courses combine online components and face-to-face classroom learning		
experiences to provide a unique learning experience and promote student understanding. We feel strongly that		
the pedagogical changes we have implemented are better serving our students and enabling them to become both		
stronger mathematically and more confident in their abilities to understand and "do math". We will also share our		
plans for future modifications of and e	expansions to our Emporium model classes.	

Is there a relationship betw	ween whole number and fraction	Room: Apollo 3
unde	rstanding?	Time: 11:00-11:45
Gayle Millsaps	Eastern Washington University	gmillsaps@ewu.edu
Steffe's work with fractions (2010) su	iggests that students' development of whole	number concepts and operations
can contribute to students' capacity	for understanding fractions although there a	may not be a direct relationship.
In particular, the schema that childre	n exhibit with respect to their understanding	g of whole numbers might predict
the schema attainment for understand	ding fractions. In this study, seven third gr	ade students were interviewed at
the beginning of the school year to examine what schemas they had developed with respect to whole number		with respect to whole numbers
using "multiple groups" problems (Empson, 2011) with whole number solutions. They were interviewed after an		
initial fraction learning sequence and	again at the end of the school year using p	problems that required reasoning
about fractions. The interviews were analyzed for the types of whole number and fraction schemas that each		and fraction schemas that each
student exhibited as they answered problems designed to elicit whole number or fraction reasoning, respectively		
The analysis of the interviews indicated a correlation between the students' whole number reasoning and the		
capacity for reasoning about fractions	3.	

Investigations Into Tasshand' Da	nanaatiwaa an Mathamatical Madaling	Room: Apollo 4
Investigations into reachers' Pe	rspectives on Mathematical Modeling	Time: 11:00-11:45
Cathrine Maiorca	University of Nevada, Las Vegas	cemaiorca@icloud.com
Travis Olson	University of Nevada, Las Vegas	travis.olson@unlv.edu
With a new emphasis on modeling in the common core, a study was developed to understand the preconceived		
knowledge about mathematical modeling that in-service teachers bring to their classrooms.		

Students' engagement, confider	nce, and use of technology for learning	Room: Apollo 5
	algebra	Time: 11:00-11:45
Linda Venenciano	University of Hawaii at Manoa	lhirashi@hawaii.edu
Judith Olson	University of Hawaii at Manoa	jkolson@hawaii.edu
Melfried Olson	University of Hawaii at Manoa	melfried@hawaii.edu
Stephanie Capen	University of Hawaii	stephaniecapen@gmail.com

This presentation reports how students' attitudes changed over a year while enrolled in a technology-based, algebrafocused mathematical modeling course for struggling high school learners. The 9th grade students were enrolled in both an Algebra I course and a course, Modeling Our World (MOW), specifically developed for students who were anticipated to struggle in Algebra I. MOW uses curriculum materials consisting of investigative lessons that provide opportunities to explore algebra topics through the use of contextual, mathematical modeling. Student attitudes were collected using subscales of the Mathematics and Technology Attitude Scale. After students completed a year of either Algebra I only or Algebra I and MOW, students who had taken Algebra I and MOW positively increased their behavioral engagement in mathematics, mathematical confidence, and confidence with technology more than students only enrolled in Algebra I. While the change in affective engagement was negative for both groups, students who took Algebra I and MOW had a smaller negative change than students only enrolled in Algebra I. We will share specific results and then discuss the implications of these results including other research questions that these data suggest, such as, how implementation of course materials affects students' attitudes, how teacher's beliefs practices affect students' attitudes, and how the contextually relevant investigations support students' confidence and engagement.

Writing as a mode of learning a	mathematics: Cognitive and affective	Room: Apollo 6
а	spects	Time: 11:00-11:45
Sarah Ives	California State University, Sacramento	sarah.ives@csus.edu
Writing as a mode of learning is powe	rful due to the fact that one is originating an	d creating a construct that is also
graphically recorded. Through writing	ig we are engaging our hands, eyes, and brai	in, simultaneously processing and
producing concepts. Writing in mathe	ematics however, has not traditionally been a	widespread pedagogical practice.
While it is gaining attention as a pr	comising tool for student learning – as well	as informing instructors of what
students know – little research has been done on how we can assess mathematical writing in an informative way.		
In this presentation I will describe a variety of writing assignments, given in two mathematics content courses for		
prospective K-8 teachers, designed to address both cognitive and affective aspects of learning mathematics. I am		
interested in learning how you may b	e using writing in your mathematics courses,	therefore time will be built in for
discussion and sharing of lessons learn	ned.	

Teacher-Student Interactions in	Single-Sex and Coeducational Math	Room: Apollo 7
0	Classes	Time: 11:00-11:45
Traci L. Carter	Clemson University	tracic@clemson.edu
S. Megan Che	Clemson University	sche@clemson.edu
William C. Bridges, Jr.	Clemson University	wbrdgs@clemson.edu
Dennis Kombe	Clemson University	dkombe@clemson.edu
In this study, which is part of a larger NSF-funded project, we examine teacher-student interactions in single-sex		
and coeducational public middle grad	les mathematics classes by using the Classro	om Assessment Scoring System -
Secondary (CLASS-S) instrument (Pianta et al., 2008). Six teachers who teach more than one type of mathematics		
class (all-boys, all-girls, and coeducational) were videotaped for five instructional sessions of each class type taught.		
Two research team members with whom inter-rater reliability was established viewed and scored each instructional		
session using the CLASS-S. Results of the analysis and supporting video clips will be shared and discussed.		

A Learning Trajectory for Tr	ansformation-based Reasoning In	Room: Apollo 8
Ge	eometry	Time: 11:00-11:45
Nicole Panorkou	Montclair State University	panorkoun@mail.montclair.edu
Steven Greenstein	Montclair State University	greensteins@mail.montclair.edu
By designing a conceptual framewor	k around transformation-based reasoning t	hat will help students reach the
geometry expectations as put forth i	n the Common Core Standards for Mathem	natics, this project addresses the
need to strengthen geometry instruct	ion in the elementary grades. We propose	that engaging young students in
the transformation-based concepts of	invariance and equivalence in the context of	f topology can provide a stronger
foundation for the subsequent learning of the concepts of similarity and congruence in Euclidean geometry. In this		
presentation, we will present our efforts to develop a learning trajectory that models the development of learners'		
transformation-based reasoning. We will also share our efforts to design and develop a dynamic geometry environment		
to mediate learners' conceptual progression along that trajectory by emphasizing the dynamic nature that connect		the dynamic nature that connects
concepts associated with this form of	reasoning.	

Differentiated Instruction in a Standards-Based Mathematics Curriculum		Room: Apollo 1 Time: 1:30-2:15	
Carolyn Mitten	University of Florida	cmitten@ufl.edu	
Tim Jacobbe	University of Florida	jacobbe@coe.ufl.edu	
Since the release of the NCT	Since the release of the NCTM Standards for Mathematics, many standards-based curricula have been developed		
which emphasize both concep	tual understanding and problem-solving skills. Tr	cansitioning from a traditional to	
standards-based curriculum brings with it many challenges for implementation in the classroom. One significant			
difficulty for mathematics educators is identifying appropriate differentiation strategies that help all students gain			
access to a deeper understanding of mathematics—something a standards-based curriculum can support. This ses-			
sion presents the findings of a study investigating elementary in-service teachers' use of differentiated instruction			
when implementing a new standards-based curriculum. After transitioning to the use of the new curriculum, teach-			
ers completed a survey describing their understanding and use of differentiation strategies both before and after			

implementation. Select teacher observations were conducted to identify how these strategies were enacted in the classroom and any barriers encountered. Successful differentiation strategies for practitioners and implications for future professional development when implementing similar standards-based curriculum will be discussed.

Learning to Teach Together: A Mathematics Educator & A Room: Apollo 2

Pre-Ser	vice Teacher	Time: 1:30-2:15	
Ryan Fox	Belmont University	ryan.fox@belmont.edu	
Nicole Bamford	Penn State-Abington	lnb5150@psu.edu	
How does a teacher plan to teach a n	ew course? Once the course is planned, how	does the progress of course com-	
pare to the teacher's original plans? In	pare to the teacher's original plans? In addition, what if a pre-service teacher observed the planning process and the		
implementation? In this session, a mathematics educator and a pre-service teacher will discuss experiences teaching			
and observing the educator's leading a math course for the first time. From planning the course to discussing class-			
room interactions, we share the highs and lows of teaching a course for the first time. In addition to observation			
component of the course, we coordinated our classroom observations with research articles and practitioner-based			
readings to support the mathematical and pedagogical learning of the pre-service teacher. These experiences encour-			
aged us to think about how we could create a model to support the mathematical and pedagogical developments			
of pre-service teachers in the future. We welcome audience members' feedback on our process and suggestions for			
future implementations.			

Technology, Intermediate Algeb	ra: Effects on Anxiety, Opportunity to	Room: Apollo 3
	Learn	Time: 1:30-2:15
Kenneth Butler	University of South Florida	butlerk1@usf.edu
Ruthmae Sears	University of South Florida	ruthmaesears@usf.edu
This study focuses on the role technology, computer based learning environments, and computer based assessments		
barro on student mothematics annist	and the encenturity to leave in a developer	mental algebra classicana em for first

have on student mathematics anxiety and the opportunity to learn in a developmental algebra classroom for first year college students. Using a mixed methods research design, it was found that technology in the classroom does not improve mathematics anxiety for all students and mandated use of computer based learning environments may increase student anxiety when this is seen as an unnecessary burden. The computer based learning environment (MyMathLab) was generally procedural and algorithmic, and it was found that students valued this aspect of the computer based environment. Future research is needed to understand how conceptual understanding and other strands of mathematics proficiency can be enhanced in the computer based learning environment. Future research is also needed to determine how interpersonal relationships can be encouraged in technologically enhanced curricula.

Nevada Ready! Supporting the	Transition from HS to (and Through)	Room: Apollo 4
(College	
William Speer	Unoversity of Nevada Las Vegas	william.speer@unlv.edu
Many states in the United States have	ve endorsed a set of Common Core State St	andards (or some close-knit vari-
ation to the CCSS). Most often these	e are not viewed as "exit standards" but inst	ead are described as college- and
career-readiness standards. As these	standards evolve through implementation a	nd use, perceptions of "academic
preparedness" may also mature with	stakeholder expectations. The changing land	lscape of assessments in the K-12
is a reflection of the rethinking taking place in regards to assessment as an endpoint versus as a starting point. Of		
course, we are interested in whether students have mastered a particular content set or objectives, but we are also		
concerned with their preparedness to	go on in their explorations of formal and inf	formal learning. The discussion is
particularly targeted toward college at	nd career readiness in mathematics and Engli	ish/Language Arts and what such
scores mean relative to students' acad	lemic preparedness for college. Higher education	tion leaders should play an active
role in this discourse as they will be di	rect beneficiaries if students arrive on campus	ses prepared to meet the demands
they will face. This session offers a	case study (of sorts) of Nevada's multi-pron	ged approach to assisting in this
transition from secondary school to c	ollege and careers with a particular emphasi	s on retention and progression in
the "first years" of university life and o	n to completion of a formal bachelor's degree	that "defines a college education."

SECONDARY MATHEMAT	ICS TEACHERS' DISPOSITION	Room: Apollo 5
TOWARD CHALLENGE		Time: 1:30-2:15
Yirah Valverde	The University of Texas at El Paso	ymvalverde@miners.utep.edu
This research focuses on mathematics teachers' disposition toward challenge and its correlation with teaching practice		
and student performance. The study w	ill employ a mixed methods methodology and	l focusing on the following guiding
research question: To what extend te	achers' disposition towards challenge affects	s teaching practice and students'
performance and what is the nature of that relationship? The research is still being conducted and data continues		
to be analyzed.		

Ma	thematical Conversations	Room: Apollo 6 Time: 1:30-2:15
Nancy Cerezo	Saint Leo University	nancy.cerezo@saintleo.edu
Sharyn Disabato	Saint Leo University	sharyn.disabato@saintleo.edu
The presenters used Sammons (2011), Using Literacy Strategies to Make Meaning in Mathematics and Hyde (2006),		
Comprehending Math. Ada	oting Reading Strategies to Teach Mathemat	ics K-6 as resources of literacy and math-

Comprehending Math: Adapting Reading Strategies to Teach Mathematics, K-6 as resources of literacy and mathematics knowledge to tie the first four mathematical practices in Common Core to the infusion of language arts communication skills: reading, writing, listening, and speaking with these four mathematical practices. They further analyzed familiar reading comprehension strategies to build middle school students' comprehension and graphic connections for mathematical concepts as thought processes. Relevant research was also reviewed to share how to link the use of students' metacognitions to the mathematical practices for communicating within various groups: student to text; student to teacher, and student to student.

Perceptions of Mathematics an	d Gender in Middle School Single-Sex	Room: Apollo 7
Classroom		Time: 1:30-2:15
Dennis Kombe	Clemson University	dkombe@clemson.edu
S. Megan Che	Clemson University	sche@clemson.edu
William C. Bridges, Jr.	Clemson University	wbrdgs@clemson.edu

This study examined middle school students' perceptions about mathematics as a gendered domain. Participants responded to items on Who and Mathematics survey instrument (Forgasz, Leder, & Kloosterman, 2004). Findings suggest that irrespective of class type, female students were more likely than male students to respond non-neutrally to survey items, resisting the notion that mathematics was a male domain. The findings mirror earlier scholarship on girls' and boys' locus of control, with indications note that girls were more likely than boys to work hard and worry when they did not do well in mathematics, whilst boys were more likely than girls find mathematics boring and distract other students from their work. Sex related differences based on class type were not observed.

Characteristics of Different Le	arning Environments in Geometry	Room: Apollo 8
Classrooms		Time: 1:30-2:15
Zhonghong Jiang	Texas State University	zj10@txstate.edu
Alex White		aw22@txstate.edu
Brittany Webre		bwebre@gmail.com
This study was a part of a larger res	earch project funded by NSF. The major	goal of the larger project was to
investigate the impact of using an ins	structional approach that utilizes dynamic a	geometry (DG) software to teach
	l students. To probe more deeply into the	ů –
processes, this study used in-depth interviews of selected teachers and students to collect qualitative data to address		
the following research question: What characterize the different learning communities in the experimental and		
control groups? The main findings of the study include: Teachers from both groups were comfortable with making		
conjectures and testing them. Since the DG group teachers used the dynamic capabilities of the software to aid		
in their investigations, they were able to produce quality conjectures more quickly. However, as to proving their		
conjectures, teachers varied considerably. Some could generate correct proofs, mostly for relatively simple geometric		
problems, some were able to work out parts of a proof but had difficulties to put the parts together, and the others		
were quite weak in proofs. Seeing that some of the teachers who had stronger mathematics knowledge than their		
peers still had misconceptions on some basic mathematical facts, we got to know: It is by no means easy to really		
increase teachers' mathematics content knowledge and particularly their proof abilities. To achieve this goal is a		
long-term task.		

Playing with Math: An Elementary School/University Partnership		Room: Apollo 1 Time: 2:30-3:15
Elizabeth Ward	Texas Wesleyan University	ekward@txwes.edu
Elisabeth Johnston	Plymouth State University	epjohnston@plymouth.edu

The purpose of this session is to describe the formation and evolution of a K-5/university partnership designed to enhance elementary students' mathematics achievement and the mathematical PCK of pre-service teachers. Two key considerations are central to the partnership. First, the mathematics activities in the intervention were based on best practices for mathematics instruction (NCTM, 2000). Second, the instructional activities implemented by the pre-service teachers are based the needs identified by the teachers of the elementary students (Tomanek, 2005). Qualitative data from the pre-service teachers and quantitative data from the elementary students based on the state assessment will be presented. The results from this research continue to influence the development of mathematics pedagogy courses within the participating university and can inform other programs regarding the development of high-quality mathematics field experiences for pre-service teachers.

Using Action Research to support togehon development		Room: Apollo 2
Using Action Research to support teacher development		Time: 2:30-3:15
Eileen Faulkenberry	Tarleton State University	efaulkenberry@tarleton.edu
Lesley Leach	Tarleton State University	leach@tarleton.edu
This study investigated the impact of action research on the professional development of teachers. The action research		
project was a portion of a year-long professional development program designed to improve pedagogical and content		
knowledge with the ultimate goal of improving their standards-based instructional practices. This presentation will		
examine the effects of the action research project on both the participants and their students.		

0 0	re-Service Teachers to meet InTASC andards	Room: Apollo 3 Time: 2:30-3:15
Alan Zollman	Indiana University Southeast	alanzoll@ius.edu
With the emphasis on using standar	rdized mathematics test scores for teacher e	evaluation, mathematics teachers
increasingly are hesitant to allow a pre-service teacher in their classrooms. Co-teaching strategies are research		
methodologies that may be able to coordinate the needs of classroom teacher and the pre-service teacher. We use		
co-teaching strategies to address the ten Interstate New Teacher Assessment and Support Consortium (InTASC)		
Core Teaching Standards on the Learner and Learning; Content Knowledge; Instruction Practice; and Professional		
Responsibility for our pre-service second	ondary mathematics teachers.	

Accepting the Challenge: A case study of CCSS-M implementation		Room: Apollo 5
Accepting the Chanenge. A cas	se study of CC55-W implementation	Time: 2:30-3:15
Kwaku Adu-Gyamfi	East Carolina University	adugwamfik@ecu.edu
Tony Thompson	East Carolina University	thompsonan@ecu.edu
This research involved a case study of one high school teacher's endeavor to teach mathematics with fidelity to		
the CCSS-M including the Standards of Mathematical Practice. Over a two year period, data were collected via		
observations, interviews, surveys, and artifacts (e.g., lesson plans, activities, student work). Results indicate that		
after initially struggling to understand and implement the CCSS-M, the teacher made significant changes to her		
teaching. Areas most strongly impacted were higher-level reasoning, academic language, and formative assessment.		

Mathematics teachers' beliefs about teaching and learning		Room: Apollo 6
mathematics		Time: 2:30-3:15
Adem Ekmekci	Rice University	ekmekci@rice.edu
Danya Corkin	Rice University	dmc7@rice.edu

This study investigates the extent to which teacher experience, mathematics knowledge, and professional development contribute to teachers' beliefs, which as the research clearly indicates, are strongly related to instructional practices and student learning and achievement in mathematics (Philipp, 2007). To what extent did factors such as teachers' content knowledge, certification type, and years of teaching relate to their beliefs? To what extent did comprehensive professional development change their beliefs? Were there differences among beliefs of elementary, middle, and high school mathematics teachers? To answer these questions, 420 K-12 mathematics teachers in five cohorts were surveyed before and after rigorous professional development program consisting of a three-week summer program and six follow-up meetings during academic year following the summer program. The teachers' beliefs survey consisted 49 items measuring teachers' views on the nature of mathematics knowledge, beliefs about theoretical models of teaching and learning mathematics, mathematics curriculum and instructional materials, student engagement, and important mathematical concepts and standards. Data analyses include multiple regression analysis and repeated measures analysis of variance. The paper will address the implications of findings for preparation and professional development of mathematics teachers.

Studying the Effectiven	ess of a Pre-K iPad Number Sense Curriculum	Room: Apollo 7 Time: 2:30-3:15
Jeffrey Shih	University of Nevada, Las Vegas	jshih@unlv.edu
Amy Adkins	University of Nevada, Las Vegas	adkinsa5@unlv.nevada.edu
Lina DeVaul	University of Nevada, Las Vegas	zangl@unlv.nevada.edu
Charles Allen	University of Nevada, Las Vegas	cmallen@unlv.nevada.edu
Taro Ito	University of Nevada, Las Vegas	taro@unlv.nevada.edu
This session describes the r	results of a randomized control study at an urban Heads	Start Center where young children

This session describes the results of a randomized control study at an urban HeadStart Center where young children were provided iPads for mathematics instruction. A researcher-developed set of apps was compared to the most popular early childhood mathematics apps. Discussion will center on the results of the study as well as what we learned about conducting research in this setting.

Item Response Theory Analysis Applied to Math Assessment		Room: Apollo 8
Inst	ruments	Time: 2:30-3:15
Jerry Obiekwe	The University of Akron Wayne College	accessx@uakron.edu
Item Response Theory (IRT) is a conc	ept enhanced by mathematical modeling that dea	ls with the response pattern
of test takers in a particular test. Th	ese patterns can be used to ascertain the ability	index, discrimination index
as well as the difficulty level of each	item on the test. It can also be used in determ	mining the differential item
functioning, and whether each item is	interpreted the same way by each examinee. The	nese response patterns often
times lead to the modification of the i	nstrument with the objective of making it better.	. There are essentially three
types of IRT. The one-parameter mod	lel, which is often called the Rasch Model, the tw	vo-parameter model and the
three-parameter model. There are of	course some clear distinctions among these model	ls. Their application to any
situation may be driven by the object	tive of the research questions as well as whether	their assumptions are met.
This study employed IRT to analyze to	est instruments for an undergraduate mathematics	s course. The results of that
analysis and its implications to teaching	ng and learning will be presented.	

Using Feedback to Develop 6th grade Math Pedagogical Content Knowledge		Room: Apollo 1 Time: 3:30-4:15
Cynthia Orona	University of Arkansas	orona@uark.edu
Conra Gist	University of Arkansas	gist@uark.edu
Kelli Dougan	University of Arkansas	kdougan@starfishnw.org
Dennis Beck	University of Arkansas	debeck@uark.edu

This pilot study focused on understanding how one rural, sixth grade mathematics teacher develops pedagogical content knowledge through the creation and revision of lesson plans and classroom instruction in response to a series of practice and feedback loops facilitated by math content experts. An online platform will be used to facilitate the development of the teacher's math pedagogical content knowledge through content modules, teacher generated lesson plans and videos, and feedback loops focused on the domains of number/computation and algebraic ideas. Pre-tests and post-tests were conducted at the beginning and end of each domain to determine the teacher's baseline math pedagogical content knowledge. Each cycle involved the teacher viewing an online mathematics content module, creating and revising lesson plans, teaching the lesson, and receiving feedback on lesson plans and classroom videos from the math content experts. The practice and feedback loop ends with the teacher reflecting on the overall formative assessment data of their instructional practice. Initial results from the pilot study will be discussed to determine how the study can be refined for full-scale implementation.

Influences of OTL and Technology when Learning Functions from a		Room: Apollo 2
UCSMP Study		Time: 3:30-4:15
Laura Hauser	University of South Florida	Lahauser@usf.edu
The study reported here is a secondar	y analysis of data collected during the field	trial of the University of Chicago

School Mathematics Project's Precalculus and Discrete Mathematics (Third Edition) curriculum. This study examines the use of technology when students (n = 270) solve function problems and the relationship between their use of technology,their opportunity to learn, and their achievement on multiple choice and constructed response assessments. Use of technology and its relationship to achievement is examined on a per problem basis. The results show that, in most cases, students are using technology when appropriate. Results from a path analysis of the data indicate use of technology has a direct effect on both opportunity to learn and student achievement, even when controlling for prior knowledge.

VSTEM: Visua	lizing Science, Technology, Engineering, &	Room: Apollo 3	
	Mathematics	Time: 3:30-4:15	
Mary Baker	University of North Dakota	mary.baker@email.und.edu	
Visualizing STEM: What	does that mean? Motivating students to learn mathema	atics and to be excited about how	
they can and will be usin	g this knowledge in their future careers is often a comple	x problem teachers are confronted	
with on a day-to-day bas	is. In this session, we will share how one group of univers	sity faculty interacted with middle	
school science and mathe	school science and mathematics teachers and students in a Mathematics and Science Partnerships Grant that was		
designed to motivate students to engage in and enjoy more mathematics and science lessons that are related to the			
topic of solar energy. From building solar houses to building a solar city, students interacted with scientists and			
mathematicians from the university as they explored how the problems associated with American's energy generation			
and consumption could possibly be addressed through the use of solar energy. Additionally, students and teachers			
interaction with university faculty also exposed them to the exciting career opportunities that exist in STEM-relate			
careers. In this session we shall share, not only the curriculum developed, but also the student impact results of o		the student impact results of our	
study. Visualizing STEM	: Seeing is believing!		

The Elipsed Classroom, What Dees the Dessenth Serv?		Room: Apollo 4
The Flipped Classroom: What Does the Research Say?		Time: 3:30-4:15
Beth Cory	Sam Houston State University	bcory@shsu.edu
Many educators have hailed the flipped classroom approach, but does the growing body of research on this new		
instructional method truly show that it is effective? In this session, participants will be given an overview of the		
various research studies analyzing student perceptions and student achievement regarding the flipped classroom		
approach as well as tips for implementing their own flipped mathematics classrooms.		

K & Teachard' Salf Efference Deliafa for Teaching Mathematics		Room: Apollo 5
K-8 Teachers' Self-Efficacy Beliefs for Teaching Mathematics		Time: 3:30-4:15
Frank Amankonah	University of New Mexico-Gallup	amankona@unm.edu
Lynda Wiest	University of Nevada, Reno	wiest@unr.edu
Teachers' self-efficacy beliefs have been suggested as one of the instructional strategies that can improve students'		

mathematics performance. Three research questions guided this mixed-method study: (a) the effects of K-8 teachers' self-efficacy beliefs for teaching mathematics, (b) factors that influence those beliefs, and (c) how and why those beliefs might influence teachers' mathematics instruction. Differences were explored by the participants' variables; gender, school level, school type, and years of teaching mathematics. Study used the Modified Teacher Self-Efficacy Beliefs Scale—Mathematics (MTSEBS-M) survey instrument to collect both quantitative and qualitative data and 66 teachers participated in the study. Teachers believe that the higher their self-efficacy belief, the more they tend to use classroom instructional approaches such as planning mathematics evaluations to accommodate student differences and engaging students in developing higher-order thinking skills in mathematics, and that their high level of confidence creates positive attitude among students. Teachers feel more confident in teaching number and operations than other content areas. Further, teachers believe that factors such as government policy, colleague dispositions and practices, and teacher mathematics enjoyment and ability, influence their confidence for teaching mathematics. Themes emerge include: mathematics content knowledge, teaching experience, and professional development.

Problem Solving in Preschool: One Program's Alignment to NAEYC		Room: Apollo 7
and NCTM		Time: 3:30-4:15
Elisabeth Johnston	Plymouth State University	epjohnston@plymouth.edu
Elizabeth Ward	Texas Wesleyan University	ekward@txwes.edu
This session will highlight the findings of a study focused on how preschool teachers support students' mathematical		
learning as recommended by NAEYC and NCTM. The presenters will include an overview of the position statement		
from NAEYC and NCTM that provided the framework for this study. Data will be reviewed pertaining to how		
preschool teachers supported students' development of problem solving skills. In addition, the presenters will engage		
participants in a discussion about how these findings may influence professional development for early childhood		
professionals.		

Smoothing The Ups and Dow	ns: Tools for Professional Transitions	Room: Apollo 8 Time: 3:30-4:15
Kansas Conrady	University of Oklahoma	kansas.conrady@ou.edu
Jonathan Bostic	Bowling Green State University	bosticj@bgsu.edu
Sean Yee	University of South Carolina	yee@math.sc.edu
Sarah Ives	California State University, Sacramento	sarah.ives@csus.edu

Riding the roller coaster through the final phases of the dissertation and the first year in your very own tenure-track position is much more fun with the company of others. Take a brief break from the research presentations and meet others that are waiting in line for the roller coaster (currently working on your masterpiece), those on the roller coaster (anyone that has defended and currently in your first year on the other side), and the panel that has recently stepped off the roller coaster (third and fourth year of the tenure track). Additionally, this meeting will allow you to meet other researchers in your specific field of study that you may want to collaborate with in the future. The panel of early career mathematics educators represents both a variety of institutions as well as years in their track and would love to help ease the excitement of the journey around the track. There will also be plenty of time for questions in this low-stress tenure-free zone.

Teachers empowered via personal self-sustaining professional development		Room: Apollo 1 Time: 8:00-8:45
Hannah Slovin	University of Hawaii at Manoa	hslovin@hawaii.edu
Fay Zenigami	University of Hawaii at Manoa	zenigami@hawaii.edu
Judith Olson	University of Hawaii at Manoa	jkolson@hawaii.edu
Linda Venenciano	University of Hawaii at Manoa	lhirashi@hawaii.edu

Teachers become co-authors of their own professional development through planning and reflection on lessons as they examine content and format of these lessons. Participants will explore materials developed for a course geared for students who need extra support in Algebra I. We will discuss how teacher materials from the program have been used during group PD sessions with special emphasis on how teachers used them beyond these sessions. The digital format of the materials allows teachers to become co-authors of their own professional documents by making adaptations for their class, writing questions, creating presentations for students to view, adding links related to the lesson topics, and archiving records and products of taught lessons for future use, thus generating personal self-sustaining PD. In this session, participants will engage in tasks from the group PD that address content and pedagogy, examine the teacher materials and interact in self-sustaining ways with them by adding their own notes, photos, and questions. Thus, we address a concern raised in the NCTM's Principles to Action (p.101) that, "Teachers frequently feel as though professional development is something done to them, instead of something done for them, involving them as active partners in their own professional growth"

IDI in the Mathematical Statistics Class		Room: Apollo 2
IBL in the Mathematical Statistics Class		Time: 8:00-8:45
Lanee Young	Fort Hays State University	lyoung@fhsu.edu
This session will discuss methods, ch	allenges, lessons, etc used in implementing	Inquiry Based Learning into the
Mathematical Statistics classroom. Qu	alitiative evidence will be provided to suppor	t the effectiveness of such learning
methods.		

Reconceptualizing Mat	h Content Courses for Pre-Service Secondary	Room: Apollo 3
	Teachers	Time: 8:00-8:45
Brian Gleason	Nevada State College	brian.gleason@nsc.edu
Ryan Fox	Belmont University	ryan.fox@belmont.edu

In this session, we present our work on how we re-conceptualized a content course for pre-service secondary mathematics teachers by extending the idea of conceptual analysis, as presented by Usiskin and colleagues (Usiskin, Peressini, Marchisotto, & Stanley, 2003). Rather than focusing on particular grade bands or a standard sequential set of topics, we presented major concepts in the secondary mathematics curriculum (e.g., function, randomness, symmetry, orthogonality). We examined each of these concepts through the same mathematical processes (e.g., definitions, examples, representations, generalizations, curricular connections, applications). The goal of the re-conceptualization was to present mathematics content to prospective secondary teachers as a coherent field of study, rather than a set of memorized rules, formulas, and graphs. Because we were not aware of attempts by other teacher educators to present content to future teachers in this way, and because this re-conceptualization was significant enough to render known existing materials insufficient, we created the materials for the course on our own. We present our work to seek feedback from the mathematics education community and solicit ideas on possible future directions for our work, such as extending the re-conceptualization process to elementary content courses or secondary or elementary methods courses.

Video Games = Spati	al Abilities = Mathematics	Room: Apollo 4 Time: 8:00-8:45
Darlinda Cassel	University of Central Oklahoma	dcassel2@uco.edu
Lana Canale	University of Central Oklahoma	lkoch4@uco.edu
There is a lot of negative advocacy in	the media regarding the influence of video g	ames. This has caused a negative
connotation towards the influence of	video games on children's cognitive, psycho	ological, and social development,
regardless of the type of video game. I	Behavior problems are usually a common cone	ception people have of video game
influences. However, not a lot of resea	rch exists to show connections between gam	e playing and children's cognitive
development. Therefore it was deeme	d necessary to explore possible positive effect	ts of video games by investigating
the influence of video games on childr	en's cognitive development.	

Exploring African American e	lementary students' mathematical	Room: Apollo 5
ide	entities	Time: 8:00-8:45
Thomas Roberts	University of Kentucky, Department of STEM Education	thomas.roberts@uky.edu
Identities are an important factor in ho	w people determine what is important to the	m and to their situation (Holland,
Lachiotte, Skinner, and Cain, 1998).	Mores specifically, academic identities are pro-	ojections of how one views oneself
as a learner (Murrell, 2008). Thus, as n	nathematical identities can be considered a sp	pecific type of academic identities,
how African American elementary stu	dents (re)create their mathematical identities	s reflects their view of themselves
as a learner of mathematics. However,	there has been relatively little research in th	ne area of mathematical identities
of elementary students in general and	l specifically for African American elementa	ary students. Given the trend of
accepting and advancing what Stinso	n (2006) refers to as the discourses of defic	iency and discourses of rejection
in the context of the "gap gazing fetis	sh" (Gutierrez, 2008) evident in much of the	e literature on students of color's
performance on standardized testing,	an approach that values the students' voice	s and perceptions in a successful
context is needed to redress the abund	lance of literature possessing a deficit view.	A theoretical framework designed
to address the limitations of deficit v	iews by exploring how African American ele	ementary students' negotiate and
(re)create successful mathematical id	entities that positively contribute to their	learning of mathematics will be
presented with potential qualitative m	ethodological approaches to further the rese	arch in this area.

Multi-mentoring strategies	or math teacher preparation and	Room: Apollo 6
in	duction	Time: 8:00-8:45
Keith Hubbard	Stephen F. Austin State University	hubbardke@sfasu.edu
Lesa Beverly	Stephen F. Austin State University	beverlyll@sfasu.edu
The recruitment and retention of qualified mathematics teachers are well-documented challenges in high schools acros		ed challenges in high schools across
our nation. Research has suggested mu	altiple reasons for the existence of these pheno	mena – among them is insufficient
teacher preparation for the challenges	faced in the classroom. We examine the pre	paration of mathematics students
seeking to become certified high school	teachers. In this presentation, we will discus	s traditional mentoring within the
mathematics teacher preparation pipe	line as it compares to an alternative model t	hat strongly incorporates a multi-
	sis of differing student teaching protocols, I	
education coursework, student exit int	terviews, journals from early exposure experi	ences with mathematics teaching,
and reflections from students (certifie	d and noncertified) who teach, we extrapola	ate best practices in mathematics
teacher preparation programs.		

Strengthening Prospective Ele	ementary Teachers' Conceptions of	Room: Apollo 7
F	actors	Time: 8:00-8:45
Ziv Feldman	Boston University	zfeld@bu.edu
Matt Roscoe	The University of Montana	roscoem@mso.umt.edu
Research on prospective elementary te	achers' understanding of prime factorization a	nd divisibility concepts has shown
that prospective teachers struggle to	outgrow their reliance on tedious computati	onal methods when identifying a
number's factors. The literature sugge	ests that this developmental obstacle originat	es in an inability or unwillingness
to attend to a number's prime factorization	ation. This session will share results from an i	ntervention in which a set of three
prime factorization tasks were impler	nented with 71 prospective elementary teach	ners across two institutions. The
study documents the promise of this set	et of tasks in encouraging prospective teacher	s to attend to prime factorization
as a way to identify a number's factors	, as well to support a change in their concept	ions of factor. Preliminary results
	he use of these tasks strengthened prospectiv	-
factorization to identify a number's fa	ctors and to construct a more robust unders	tanding of factor.

Advancing Additive Des	soning with Second Differences	Room: Apollo 8
Auvancing Additive Rea	soning with Second Differences	Time: 8:00-8:45
Nathaniel Phillips	Virginia Tech	ndphill@vt.edu
Catherine Ulrich	Virginia Tech	culrich@vt.edu
Reasoning about differences (additiv	e comparisons) of two quantities has been s	hown to be difficult for students

Reasoning about differences (additive comparisons) of two quantities has been shown to be difficult for students (e.g., Thompson, 1993; Vergnaud, 1988) and becomes increasingly important in middle grades students' work with integers and algebra (e.g., Thompson & Dreyfus, 1988). Utilizing a constructivist teaching experiment methodology, we worked with two sixth-grade students over the course of eight teaching sessions on complex additive situations. In these situations, students not only had to operate on differences of two quantities, but also had to operate on the difference of those differences (a second difference). In the first session, neither student could solve a second difference task without support from the teacher/researcher, while in the eighth session (almost seven months later) both were able to independently do so in multiple contexts. Our analysis of the intervening session reveals important changes in the students' ability to construct, differentiate, and reflect on the quantities involved in these complex additive situations. Preliminary findings indicate that purposeful selection of the context and variation of the number and type of missing quantities/differences promoted these changes. This analysis provides a foundation for a more detailed characterization of the development of additive reasoning. Implications for future research will be discussed.

Secondary Mathematics Teacher	Preparation: A Collaborative Tetrad	Room: Apollo 1
]	Model	Time: 9:00-9:45
Jennifer Eli	The University of Arizona	jeli@math.arizona.edu
Student teaching is often described a	s the most influential part of teacher prepa	ration. During student teaching,
pre-service teachers are expected to p	ut into practice the integration of content and	d pedagogy under the mentorship
of knowledgeable others in a classroom	n setting. The traditional model of student t	eaching supervision involves daily
interaction with an in-service teacher	coupled with periodic visits by a university s	supervisor, usually a mathematics
educator. Although university mathe	maticians are responsible for significant por	tions of teacher preparation prior
to student teaching, they are often a	absent during this crucial period. In this se	ession, I propose a new model of
collaboration for supporting mathema	atics teacher preparation that includes both a	mathematicians and mathematics
educators in the student teaching sem	ester. I will discuss preliminary findings from	the implementation of the tetrad
model with a focus on the professiona	al noticing of all tetrad members.	

ELEMENTARY MATHEMATICS TEACHER BELIEFS Room: Apollo 2 Times 0:00 0:45

Time: 9:00-9:45Brian EvansPace Universitybevans@pace.eduThe purpose of this study was to understand teacher beliefs about teaching mathematics over the course of an ele-
mentary mathematics teaching methods course. The participants came from three groups of in-service and preservice
teachers in master's degrees programs at a university in New York: New York City Teaching Fellows, Teacher Edu-
cation Assessment and Management program, and traditional preservice teachers. Findings revealed an increase in
positive beliefs about teaching mathematics over the semester, but there were no differences in participants' beliefs
between the three programs.

Literacy Strategies to Impact	Learning in the College Calculus	Room: Apollo 3
Cla	ssroom	Time: 9:00-9:45
Tena Roepke	Ohio Northern University	t-roepke@onu.edu
Debra Gallagher	Bowling Green State University	dgallag@bgsu.edu
Two university faculty, a content liter	cacy instructor and a mathematics instructor	or, share their efforts to integrate
literacy-based instructional strategies	in a college calculus classroom. Specific strat	egies and classroom examples will
be discussed. Students were surveyed	about their perceptions of these instructiona	al strategies and the impacts they
believe these had on their learning of	the mathematics content. These survey res	ults will be discussed extensively.
Some discussion of related research wi	ll be shared as well as possible next steps fo	r the current project.

Cognitive Skills and Mathema	atics Problem-Solving Performance	Room: Apollo 4
		Time: 9:00-9:45
Ardyth Foster	Armstrong State University	ardyth.foster@armstrong.edu
Geared towards teacher educators and	d elementary and middle-school mathematics	s teachers, the findings of a study
that explored relationships between s	students' cognitive skills and their mathema	tics problem-solving performance
will be presented. The existing compl	exities within this area, along with the poten	tial implications for collaboration
among students and their teachers/p	eers, and for appropriate and effective peda	agogical decision making, will be
discussed. By addressing possible rela	tionships between students' cognitive skill str	engths and skill-based assessment
methods, this presentation will provi	ide opportunities for exploring and discussing	ng potential impacts on teaching
and assessment methods that are gea	ared towards students' learning strategies/st	yles, and that engage students in
meaningful critical thinking activities	5. The importance and effectiveness of skill	based instruction and assessment
have the potential for closing achieven	ment gaps and promoting learning for all stu	dents.

What I Learned About Conce	pt Maps on My Summer Vacation	Room: Apollo 5
What I Dearned About Conce	pt maps on my Summer vacation	Time: 9:00-9:45
Mary Swarthout	Sam Houston State University	swarthout@shsu.edu
What are concept maps? Can the use	of concept maps impact learning and instruc	tion in mathematics? The session
will feature a definition of concept ma	ps, details about different uses of concept m	aps for research and instructional
planning, and a summary of results fro	om the current research literature. Details on	present technology tools allowing
for creation and editing of maps will b	be shared as a part of encouraging conversat	ion about ways that the mapping
tool can be incorporated in instruction	al planning and research projects to investiga	ate factors related to mathematics
learning.		

The Impact of a Two Year	Professional Development Program on	Room: Apollo 7
I	Math Teachers	Time: 9:00-9:45
Sue Brown	University of Houston-Clear Lake	browns@uhcl.edu
Eighteen teachers participated in	a two-year externally funded grant. Five content a	areas of middle school mathematics
and two instructional skills object	ives were addressed by the project. Content areas	were patterns; relations and func-
tions; variables and equations; ra	tio and proportion, and proportional and non-pro	portional reasoning. Instructional
skills targeted were the use of m	anipulatives, cooperative grouping, differentiated	instruction, and student-centered
instruction, and the ability to s	uccessfully ask higher-level questions during tead	ching. Program evaluation relied
on pre- and posttests of content	knowledge; participant input surveys; the Classre	oom Community Scale; classroom
observations rated with the Refe	rmed Teacher Observation Protocol Scales (RTO	P); digital Questioning Portfolios
with videos of participants' own	teaching; and standardized state test results for	a subset (n=892) of participants'
students. Based on both object	ive measures and participants' reactions, this p	rogram was a success. Teachers'
content knowledge did increase, a	and classroom observations, survey data, and vide	eotaped lessons indicated that the
majority were successfully integr	ating grant activities and content into their own	classes. With respect to evidence
of impact on participants' stude	nts STAAR scores, the percent attaining satisfac	ctory or above scores ranged from
72% to 86%, all above Texas states 72%	ewide percentages.	

	Time: 9:00-9:45
	Manoa spaek@hawaii.edu
Daniel Hoffman University of Illinois at Urbana- Champaign dlh21090	s at Urbana- dlh2109@illinois.edu

What are negative numbers? This is a difficult question, even for adults, so we know it is a very challenging question for young children. Researchers argue negative numbers are difficult to understand due to three factors: 1) the conflict between the practical meaning of magnitude or the quantity associated with numbers in early arithmetic teaching and the concept of negative numbers (Fischbein, 1987; Hefendehl-Hebeker, 1991), 2) the conflict between two different meanings of the "-" sign (Janvier, 1985; Carraher, 1990), and 3) the absence of a good, intuitive, and familiar model which would consistently satisfy all the algebraic properties of signed numbers (Glaeser, 1981, quoted in Fischbein, 1987). Given this background, the researcher attempted to address the challenge of negative numbers from an instructional designer's perspective. More specifically, the researcher designed instruction that introduced negative numbers in a manner that is consistent with positive numbers and uses a familiar instructional tool (e.g. a number line), while emphasizing the different meanings of the minus sign. The first step in this process was a clinical interview to examine how young children begin to understand negatives while providing instruction in one-to-one sessions. For the presentation, the findings of the interview, as well as suggested instructional design approaches to negative numbers, will be discussed.

Creating statewide math initiative by collaboration and design research		Room: Apollo 1 Time: 10:00-10:45
Teruni Lamberg	University of Nevada, Reno	Terunil@unr.edu
Travis Olson	University of Nevada, Las Vegas	travis.olson@unlv.edu
Jeffrey Shih	University of Nevada, Las Vegas	jshih@unlv.nevada.edu
Ed Keppelman	University of Nevada, Reno	keppelma@unr.edu
Peggy Lakey	University of Nevada, Reno	plakey@unr.edu

A framework for a statewide professional development mathematics initiative that involved collaboration among multiple agencies is presented. The data collected ranged from documenting the design decisions made and the impact of the professional development. The framework revealed the need for a jointly negotiated vision, co-creation of knowledge with regard to issues, format and delivery of professional development, willingness to learn, adaptability to local context and collegiality influenced design decisions that were made. These design decisions impacted the nature of tasks and delivery of the professional development. The findings revealed that the teachers found the professional development meaningful and the data revealed that teacher content knowledge was positively impacted.

Language Acquisition in Mathematics for Struggling Students – What		Room: Apollo 2
Works		Time: 10:00-10:45
Bill Jasper	Sam Houston State University	jasper@shsu.edu
Students sometimes struggle learning mathematics, because they do not understand the vocabulary used in a class-		
room. This is especially true for English Language Learners, who often skim the surface of concept understanding		
due to language acquisition problems. This session will summarize research-based intervention strategies that help to		
enhance student learning. In addition, examples of how to best incorporate academic language during mathematics		
lessons will be discussed, with audience interaction.		

The Core-Math Project: Teacher Educators Partnering with K-5		Room: Apollo 3
Schools		Time: 10:00-10:45
Kerri Richardson	University of North Carolina at Greens-	lednisha 2@un an adu
Kerri Kichardson	boro	kdricha2@uncg.edu
In this session, I share a professional development model for mathematics teaching and learning implemented with		
elementary teachers. The unique model includes on-going support for student-centered learning while enabling		
teachers to take graduate courses toward becoming elementary math specialists.		

LOCUS: Assessing Students' ar	d Teachers' Knowledge of Statistics	Room: Apollo 4 Time: 10:00-10:45
Catherine Case	University of Florida	ccase@ufl.edu
Steve Foti	University of Florida	fotisj@ufl.edu
Douglas Whitaker	University of Florida	whitaker@ufl.edu
Tim Jacobbe	University of Florida	jacobbe@coe.ufl.edu
The Levels of Conceptual Understand	ling of Statistics (LOCUS) assessments are	the product of a multi-year NSF
grant (DRL-1118168) designed to me	easure conceptual understanding of statistic	s and are aligned with both the
Common Core State Standards (CCSS) and the American Statistical Association's Guidelines for Assessment and		
Instruction of Statistics Education (GAISE) (Franklin et al., 2007). The LOCUS assessments were developed using		
a modified version of evidence-centered design (Jacobbe, Case, Whitaker, & Foti, 2014) and are available as paper-		
and-pencil assessments (multiple choice and constructed response items) and as an online assessment (multiple choice		
items only). The online version provides feedback about the components of the statistics problem-solving process		
as outlined in the GAISE framework (Formulating Questions, Collecting Data, Analyzing Data, and Interpreting		
Results) as well as the CCSS standards each item is related to. The assessments have been validated for use with		
students in grades 6-12; there are on-going efforts to validate the assessments with tertiary level introductory statistics		
students and pre-service teachers. This presentation provides an overview of the LOCUS assessments, including the		
development process, the results the operational implementation with 3500 students in grades 6-12, and the on-going		
validation process with pre-service teachers.		

How They See it: Pre-service Elementary Math Majors Images of		Room: Apollo 5
Their Future		Time: 10:00-10:45
Keith Adolphson	Eastern Washington University	kadolphson@ewu.edu
This study draws upon the unusual circumstance of our institution having undergraduate elementary and middle-		
level mathematics education majors. It builds on the work of Utley and Showalter to look longitudinally at how		
these preservice majors' images of themselves as teachers of mathematics might change over time. Data gathered		
early and near the end of the program were analyzed to make comparisons of changes in these images as their course		
of study in the major developed. Discussion will characterize our program, describe the study, summarize results,		
and speculate on implications and possible programmatic changes.		

The Response of Preservice Teachers to Algebraic Misconceptions of		Room: Apollo 6
	Students	Time: 10:00-10:45
Ayse Tugba Oner	Texas A&M University	aysetugbaoner@email.tamu.edu
S. Enrico P. Indiogine	Texas A&M University	hindiogine@gmail.com
Gerald Kulm	Texas A&M University	gkulm123@gmail.com
Nickolaus Ortiz	Texas A&M University	nkortz89@aol.com
Trina Davis	Texas A&M University	trinadavis@tamu.edu
Haiping Hao	Texas A&M University	hao142@tamu.edu
The purpose of the study was to determine which types of misconceptions were the most difficult to address and how		

the performance in eliminating algebra misconceptions was related to preservice teachers' (PST) problem solving knowledge and teaching efficacy. One of the obstacles that impede mathematics proficiency is the presence of algebra misconceptions. We believe that mathematics PSTs should be fully equipped in detecting and eliminating misconceptions before they reach their classroom. In this study we gave middle school mathematics PSTs assignments where they were tasked to help students with misconceptions about ratios, proportions, decimals, percents, surface areas and volumes. In addition to the assignments, we gave a test where the majority of the questions were about algebra and other questions on how PSTs would assist a student who needed help with misconceptions. Besides these assignments and the test, an instrument evaluating PSTs' beliefs about teaching was given. We present the results of our investigation and highlight the misconceptions that caused the majority of the problems. The beliefs of the PSTs that are related to their capacity to overcome algebra misconceptions are also presented.

The challenges and possibilities of the edTPA		Room: Apollo 7 Time: 10:00-10:45
Tony Thompson	East Carolina University	thompsonan@ecu.edu
Kwaku Adu-Gyamfi	East Carolina University	adugwamfik@ecu.edu
Maureen Grady	East Carolina University	gradym@ecu.edu
The East Carolina University mathematics education program is currently in its 3rd year of implementation of		
the edTPA (educative Teacher Performance Assessment). This presentation explores the diverse and sometimes		

the edTPA (educative Teacher Performance Assessment). This presentation explores the diverse and sometimes unanticipated impact that implementation of the edTPA has had on our program; this presentation will include the perceptions and experiences of pre-service teachers, clinical teachers, and university faculty regarding the edTPA as well as the impact of the edTPA on coursework and policies. Recommendations for implementing the edTPA in mathematics education programs will be provided.

Bridging the algebra gap. Effec	ts of an online summer math refresher	Room: Apollo 8
Bridging the algebra gap: Effects of an online summer math refresher		Time: 10:00-10:45
Jodi Frost	Indiana State University	Jodi.Frost@indstate.edu
Nicole Bailey	Indiana State University	Nicole.Bailey@indstate.edu
Eric Graves	Indiana State University	Eric.Graves@indstate.edu
Ellie Pounds	Indiana State University	Ellie.Pounds@indstate.edu

During the summer of 2014, Indiana State University's Math & Writing Center, in collaboration with the Department of Mathematics, piloted a two week online refresher program designed to help incoming freshmen at risk of failing their college algebra class succeed in their first semester. The program aimed to remind students of processes and concepts they may have forgotten over time, as well as to help them develop confidence and study skills. This was accomplished by using a mix of online resources and live tutoring, provided through Blackboard Collaborate. The presenters will introduce this program to participants, as well as discuss research and findings regarding student success based on participation in the program. Finally, they will solicit feedback regarding what could be improved upon in the future given that it is a work in progress.

Collaborative Teaching in a Mathematics Classroom		Room: Apollo 1 Time: 11:00-11:45
Sheila Darker	Duluth Public Schools	sheila.darker@isd709.org
Kay Wohlhuter	University of Minnesota Duluth	kwohlhut@d.umn.edu
The purpose of this action research was to examine the decisions that influence collaborative teaching in a mathe-		
matics classroom. A special education teacher and a mathematics teacher shared all of the responsibility in an eighth		
grade classroom. This classroom included students with learning disabilities mainstreamed in a general education		
setting. In this session the researcher will share the successes, challenges, and implications of collaborative teaching		
in a mathematics classroom.		

Do Students with Disabilitie	es have Access to Effective Math	Room: Apollo 2
Instruction		Time: 11:00-11:45
Jeremy Winters	Middle Tennessee State University	jwinters@mtsu.edu
Dovie Kimmins	Middle Tennessee State University	dkimmins@mtsu.edu
Craig Rice	Middle Tennessee State University	crice@mtsu.edu
With the implementation of the Con	mon Core State Standards for Mathematic	cs, teachers and students will be
required to think and reason about ma	athematics at a deeper level than ever before	e. Problem-solving skills will need
to be emphasized more. Traditionally, teachers have perceived students with disabilities as not having the ability to		
do mathematical problem solving. Moreover, research indicates that a teachers' own ability to problem solve impacts		
a student's disposition towards, as well as ability to problem solve (Kroll & Miller, 1993; Henningsen & Stein, 2002).		
Grouws (2003) indicates that a teacher's ability to problem solve is vital to a student's ability to develop as a problem		
solver. This study researched the access of students with disabilities to deep mathematics by investigating special		
education teachers' perceptions of problem solving, as well as their skills to problem solve. The study involved special		
education and general education teachers. A total of 168 teachers participated (74 special educators and 94 general		
educators). Data was analyzed using MANOVA with independent variables being license type (special or general		
education) and level (elementary, middle, secondary) and dependent variables from the beliefs instrument (Indiana		
Mathematics Belief Scales (IMBS)) and a problem-solving instrument. Results and implications will be shared.		

Examining student achievement when using a modeling approach to		Room: Apollo 4
algebra		Time: 11:00-11:45
Judith Olson	University of Hawaii at Manoa	jkolson@hawaii.edu
Fay Zenigami	University of Hawaii at Manoa	zenigami@hawaii.edu
Melfried Olson	University of Hawaii at Manoa	melfried@hawaii.edu
Hannah Slovin	University of Hawaii at Manoa	hslovin@hawaii.edu
Material margine development for		

Materials were developed for a new course for 9th grade Hawaii public school students who might struggle in Algebra I. Although designed to primarily support struggling learners, the program does not follow a remedial mathematics design. Instead, it comprises investigations of interesting, culturally relevant topics through an algebraic lens that give students opportunities to explore algebraic topics in ways that promote the development of mathematical modeling. The course targets an identified subset of Common Core standards aligned to the content of algebra, particularly functions, with modeling, and promote the constructs of mathematical practices. Technology is integrated into lessons to begin development of concepts or enhance and extend algebraic ideas of the lessons. This session reports on the effects on students' mathematics knowledge of algebra concepts. We share how students' understanding of mathematics has been affected on pre- and post-assessments and the Algebra I end-of-course exam. We will discuss implications this has regarding the use of modeling to support student understanding of mathematics courses at this level.

Development of an assessment tool for communicating mathematically		Room: Apollo 6 Time: 11:00-11:45
Kathy Smith	Tarleton State University	ksmith@tarleton.edu
Molly Weinburgh	Texas Christian University	m.weinburgh@tarleton.edu
Cecilia Silva	Texas Christian Universit	c.silva@tcu.edu
Natalie Smith	Texas Christian University	n.m.smith9@tcu.edu

Drawing from the National Council of Teachers of Mathematics (NCTM), the new Common Core for Mathematics, literacy literature, Lemke's four modes of communication (2004), and theoretical work in multi-functional communicative semiotic (Silverstein, 1995, 2004), we developed an analytical framework for cataloging student communication patterns. The four distinct sections of the analytical tool, looks at the mode of communicating, the application of these modes, the mathematical content the students can discuss and the process standards the students utilize to communicate. The culminating instrument allows researchers a multi-modal view of students' writing about communicating mathematically. Time will be utilizing the instrument i analyzing samples of student writing.

Empowering Ownership of Proof with Communal Proof-Writing		Room: Apollo 7	
Criteria		Time: 11:00-11:45	
Sean Yee	University of South Carolina	yee@math.sc.edu	
Boyle Justin	University of Alabama	jboyle@bamaed.ua.edu	
Winnie Ko	Indiana State University	Winnie.Ko@indstate.edu	
Sarah Bleiler	Middle Tennessee State University	Sarah.Bleiler@mtsu.edu	
Current reforms call for a stronger emphasis on teaching and learning proof in secondary mathematics. For example,			
the Standards for Mathematical Practices (NGA & CCSSO, 2010) and the Principles to Actions (NCTM, 2014)			
suggest students should be provided with opportunities to develop arguments and critique others' reasoning. These			
recommendations pose serious challenges for many secondary mathematics teachers who tend to focus on structure			
rather than content, and who see proof as a geometry "topic" that should be covered only with advanced mathematics			
students (Knuth, 2002). To address teachers' limited conceptions of proof and to encourage their active reflection			
on what counts as mathematical proof, we developed and implemented an instructional sequence for prospective			
secondary mathematics teachers (PSMTs). Our aim was for PSMTs to experience learning proof as a communal,			
negotiated, and sense-making process, rather than a rigid structure that is to be replicated (Stylianou, Blanton, &			
Knuth 2000). In this report, we consider the influence of the instructional sequence on how PSMT's think about			

Knuth, 2009). In this report, we consider the influence of the instructional sequence on how PSMT's think about proof. Our research question is: In what ways do PSMTs perceive this instructional sequence as different from their prior experiences with mathematical proof?

The 30 Second Challenge: Improving Preservice Computational		Room: Apollo 8	
Fluency		Time: 11:00-11:45	
Rachel Bachman	Weber State University	rachelbachman1@weber.edu	
Dixie Blackinton	Weber State University	dblackinton@weber.edu	
This presentation will share the results of an action research project to improve the computational fluency of prospec-			
tive elementary teachers through the use of a commercially available daily mental math exercise called the "30 second			
challenge." This tool was used to augment the conceptual investigation of standard operational algorithms regularly			
included in this mathematics course to improve flexibility of mathematical calculations and proficiency with standard			
algorithms. The presentation will demonstrate how the tool was used in two different sections of the course, relay			
pivotal class conversations resulting from the use of the tool, and compare pretest/posttest results of the proficiency			
of future teachers with the addition, subtraction, multiplication, and division of whole numbers, fractions, decimals,			
and percentages.			

Presenters Index

Adkins, Amy, University of Nevada, Las Vegas, adkinsa5@unlv.nevada.edu, 10, 24 Adolphson, Keith, Eastern Washington University, kadolphson@ewu.edu, 10, 17, 32 Adu-Gyamfi, Kwaku, East Carolina University, adugwamfik@ecu.edu, 24, 33 Allen, Charles, University of Nevada, Las Vegas, cmallen@unlv.nevada.edu, 10, 24 Amankonah, Frank, University of New Mexico-Gallup, amankona@unm.edu, 14, 26 Assad, Ann, Austin Peay State University, assadd@apsu.edu, 18 Avalos, Benjamin, Education Service Center, Region One, bavalos@bisd.us, 16 Bachman, Rachel, Weber State University, rachelbachman1@weber.edu, 35 Bailey, Nicole, Indiana State University, Nicole.Bailey@indstate.edu, 33 Baker, Mary, University of North Dakota, mary.baker@email.und.edu, 25 Bamford, Nicole, Penn State-Abington, lnb5150@psu.edu, 21 Bates, Rachel, Redlands Community College, rachel.bates@redlandscc.edu, 8 Beck, Dennis, University of Arkansas, debeck@uark.edu, 25 Beverly, Lesa, Stephen F. Austin State University, beverlyll@sfasu.edu, 28 Blackinton, Dixie, Weber State University, dblackinton@weber.edu, 35 Bleiler, Sarah, Middle Tennessee State University, Sarah.Bleiler@mtsu.edu, 34 Bostic, Jonathan, Bowling Green State University, bosticj@bgsu.edu, 12, 26 Bowman, Elayne, University of Oklahoma, ewbowman@ou.edu, 14Brahier, Daniel, Bowling Green State University, brahier@bgsu.edu, 16 Bridges, Jr., William C., Clemson University, wbrdgs@clemson.edu, 20, 22 Brown, Sue, University of Houston-Clear Lake, browns@uhcl.edu, 30 Butler, Kenneth, University of South Florida, butlerk1@usf.edu, 21Canale, Lana, University of Central Oklahoma, lkoch4@uco.edu, 27Capen, Stephanie, University of Hawaii, stephaniecapen@gmail.com, 19 Carter, Traci L., Clemson University, tracic@clemson.edu, 20 Carter, Tyrette, North Carolina A&T State University, tscarte1@ncat.edu, 16 Case, Catherine, University of Florida, ccase@ufl.edu, 32 Cassel, Darlinda, University of Central Oklahoma, dcassel2@uco.edu, 27

22 Che, S. Megan, Clemson University, sche@clemson.edu, 20, 22 Clinkenbeard, Jennifer, California State University Fullerton / Claremont Graduate University, jclinkenbeard@fullerton.edu, 14 Columba, Lynn, Lehigh University, hlc0@lehigh.edu, 16 Conrady, Kansas, University of Oklahoma, kansas.conrady@ou.edu, 14, 26 Corkin, Danya, Rice University, dmc7@rice.edu, 24 Cory, Beth, Sam Houston State University, bcory@shsu.edu, 25 Darker, Sheila, Duluth Public Schools, sheila.darker@isd709.org, 33 Davis, Trina, Texas A&M University, trinadavis@tamu.edu, 32 DeVaul, Lina, University of Nevada, Las Vegas, zangl@unlv.nevada.edu, 10, 24 Disabato, Sharyn, Saint Leo University, sharyn.disabato@saintleo.edu, 22 Dixon, Juli, University of Central Florida, juli.dixon@ucf.edu, 17 Dougan, Kelli, University of Arkansas, kdougan@starfishnw.org, 25Ekmekci, Adem, Rice University, ekmekci@rice.edu, 24 Eli, Jennifer, The University of Arizona, jeli@math.arizona.edu, 29Erwin, Kimberly, North Carolina A&T State University, kderwin@ncat.edu, 16 Evans, Brian, Pace University, bevans@pace.edu, 29 Faulkenberry, Eileen, Tarleton State University, efaulkenberry@tarleton.edu, 8, 23 Faulkenberry, Thomas, Tarleton State University, faulkenberry@tarleton.edu, 8 Feldman, Ziv, Boston University, zfeld@bu.edu, 28 Feng, Shoudong, University of Central Arkansas, sfeng@uca.edu, 12 Foster, Ardyth, Armstrong State University, ardyth.foster@armstrong.edu, 30 Foster, Lucas, Northeastern State University, fosterlb@nsuok.edu, 12 Foti, Steve, University of Florida, fotisj@ufl.edu, 32 Fox, Ryan, Belmont University, ryan.fox@belmont.edu, 21, 27 Frost, Jodi, Indiana State University, Jodi.Frost@indstate.edu, Gallagher, Debra, Bowling Green State University, dgallag@bgsu.edu, 29 Gault, Rebecca, University of Central Florida, rebecca.gault@knights.ucf.edu, 17 Gist, Conra, University of Arkansas, gist@uark.edu, 25 Gleason, Brian, Nevada State College, brian.gleason@nsc.edu, 27 Grady, Maureen, East Carolina University, gradym@ecu.edu, 9,

33

Cerezo, Nancy, Saint Leo University, nancy.cerezo@saintleo.edu,

Graves, Eric, Indiana State University, Eric.Graves@indstate.edu, 33

Greenstein, Steven, Montclair State University, greensteins@mail.montclair.edu, 20

Hale, Ryan, Barry University, ryan.hale@mymail.barry.edu, 11

Hao, Haiping, Texas A&M University, hao142@tamu.edu, 32 Hauser, Laura, University of South Florida, Lahauser@usf.edu, 25

Hodges, Thomas, University of South Carolina, hodgeste@mailbox.sc.edu, 15

Hoffman, Daniel, University of Illinois at Urbana-Champaign, dlh2109@illinois.edu, 31

Howell, Elizabeth, Southern Methodist University, ehowell@smu.edu, 13

Howell, Tracey, UNCG, thhowell@uncg.edu, 18

- Hubbard, Keith, Stephen F. Austin State University, hubbardke@sfasu.edu, 28
- Ichinose, Cherie, California State University Fullerton, cichinose@fullerton.edu, 14
- Indiogine, S. Enrico P., Texas A&M University, hindiogine@gmail.com, 32
- Ito, Taro, University of Nevada, Las Vegas, taro@unlv.nevada.edu, 10, 24
- Ives, Sarah, California State University, Sacramento, sarah.ives@csus.edu, 19, 26
- Jacobbe, Tim, University of Florida, jacobbe@coe.ufl.edu, 21, 32

Jasper, Bill, Sam Houston State University, jasper@shsu.edu, 31 Jensen, Taylor, Western Governors University,

tajknight@gmail.com, 13

Jiang, Zhonghong, Texas State University, zj10@txstate.edu, 23

Johnston, Elisabeth, Plymouth State University, epjohnston@plymouth.edu, 23, 26

Jong, Cindy, University of Kentucky, cindy.jong@uky.edu, 15 Jordan, Pat, Oklahoma State University,

patricia.jordan@okstate.edu, 17

- Justin, Boyle, University of Alabama, jboyle@bamaed.ua.edu, 34
- Kartal, Ozgul, Illinois Institute of Technology, ozgulkartal@gmail.com, 15
- Keppelman, Ed , University of Nevada, Reno, keppelma@unr.edu, 31
- Kimmins, Dovie, Middle Tennessee State University, dkimmins@mtsu.edu, 33
- Ko, Winnie, Indiana State University, Winnie. Ko@ind
state.edu, 34
- Kombe, Dennis, Clemson University, dkombe@clemson.edu, 20, 22

Kuehnert, Eloise, University of North Texas, eloise.kuehnert@unt.edu, 10

- Kulm, Gerald, Texas A&M University, gkulm123@gmail.com, 32
- Lakey, Peggy, University of Nevada, Reno, plakey@unr.edu, 31 Lamberg, Teruni, University of Nevada, Reno, Terunil@unr.edu, 31
- Leach, Lesley, Tarleton State University, leach@tarleton.edu, 23

Lee, Sun Hee, University of Illinois at Urbana-Champaign, lee771@illinois.edu, 9

Lockwood, Heather, Eastern Washington University, hlockwood86@gmail.com, 17

- Maiorca, Cathrine, University of Nevada, Las Vegas, cemaiorca@icloud.com, 9, 19
- Matney, Gabriel, Bowling Green State University, gmatney@bgsu.edu, 12

- Millsaps, Gayle, Eastern Washington University, gmillsaps@ewu.edu, 19 Mitten, Carolyn, University of Florida, cmitten@ufl.edu, 21 Morrissey, Susie, Illinois Institute of Technology, gmorriss@hawk.iit.edu, 15 Obiekwe, Jerry, The University of Akron Wayne College, accessx@uakron.edu, 24 Olson, Judith, University of Hawaii at Manoa, jkolson@hawaii.edu, 19, 27, 34 Olson, Melfried, University of Hawaii at Manoa, melfried@hawaii.edu, 17, 19, 34 Olson, Travis, University of Nevada, Las Vegas, travis.olson@unlv.edu, 17, 19, 31 Oner, Ayse Tugba, Texas A&M University, aysetugbaoner@email.tamu.edu, 32 Orona, Cynthia, University of Arkansas, orona@uark.edu, 25 Ortiz, Nickolaus, Texas A&M University, nkortz89@aol.com, 32 Paek, Seungoh, University of Hawaii at Manoa, spaek@hawaii.edu, 31 Panorkou, Nicole, Montclair State University, panorkoun@mail.montclair.edu, 20 Phillips, Glenn, Texas A&M University, glennallenphillips@gmail.com, 9 Phillips, Nathaniel, Virginia Tech, ndphill@vt.edu, 29 Pinchback, Carolyn, University of Central Arkansas, carolinp@uca.edu, 12 Popovic, Gorjana, Illinois Institute of Technology, gorjana.popovic@gmail.com, 15 Pounds, Ellie, Indiana State University, Ellie.Pounds@indstate.edu, 33 Pourdavood, Roland, Cleveland State University, r.pourdavood@csuohio.edu, 12 Pratt, Sarah, University of North Texas, sarah.pratt@unt.edu, 10, 18 Pugalee, David, Center for STEM Education, UNC Charlotte, david.pugalee@uncc.edu, 8 Redmond-Sanago, Adrienne, Oklahoma State University, adrienne.redmond@okstate.edu, 13 Reeder, Stacy, University of Oklahoma, reeder@ou.edu, 13 Rice, Craig, Middle Tennessee State University, crice@mtsu.edu, 33 Richardson, Kerri, University of North Carolina at Greensboro, kdricha2@uncg.edu, 31 Riggs, Beth, Tarleton State University, eriggs@tarleton.edu, 8
- Roberts, Thomas, University of Kentucky, Department of STEM Education, thomas.roberts@uky.edu, 28

Roepke, Tena, Ohio Northern University, t-roepke@onu.edu, 29 Roscoe, Matt, The University of Montana.

roscoem@mso.umt.edu, 28

Seaman, Carol, UNCG, ceseaman@uncg.edu, 18

Sears, Ruthmae, University of South Florida,

- ruthmaesears@usf.edu, 21
- Shih, Jeffrey, University of Nevada, Las Vegas, j
shih@unlv.edu, 10, 24 $\,$
- Shih, Jeffrey, University of Nevada, Las Vegas, jshih@unlv.nevada.edu, 31
- Silva, Cecilia, Texas Christian Universit, c.silva@tcu.edu, 34
- Slovin, Hannah, University of Hawaii at Manoa, hslovin@hawaii.edu, 27, 34
- Smith, Kathy, Tarleton State University, ksmith@tarleton.edu, 8, 34
- Smith, Natalie, Texas Christian University, n.m.
smith 9@tcu.edu,34

Smith, Nichole, North Carolina A&T State University, nlsmith2@ncat.edu, 16 Speer, William, Unoversity of Nevada Las Vegas, william.speer@unlv.edu, 22 Swarthout, Mary, Sam Houston State University, swarthout@shsu.edu, 30 Tapp, Laura, University of Central Florida, Laura.tapp@knights.ucf.edu, 17 Telese, James, University of Texas, Brownsville, James.telese@utb.edu, 16 Tennyson, Amie, Hurst Euless Bedford ISD, AmieTennyson@hebisd.edu, 18 Thomas, Troy, University of Nevada, Reno, troysailer@yahoo.com, 14 Thompson, Tony, East Carolina University, thompsonan@ecu.edu, 24, 33 Trowell, Sandra, Valdosta State University, strowell@valdosta.edu, 18 Ulrich, Catherine, Virginia Tech, culrich@vt.edu, 29 Utley, Juliana, Oklahoma State University, juliana.utley@okstate.edu, 13 Valverde, Yirah, The University of Texas at El Paso, ymvalverde@miners.utep.edu, 22 Venenciano, Linda, University of Hawaii at Manoa, lhirashi@hawaii.edu, 19, 27 Wachira, Patrick, Cleveland State University, p.wachira@csuohio.edu, 12 Ward, Elizabeth, Texas Wesleyan University, ekward@txwes.edu, 23.26 Webre, Brittany, NA, bwebre@gmail.com, 23 Weinburgh, Molly, Texas Christian University, m.weinburgh@tarleton.edu, 34 Wells, Lauren, Austin Peay State University, wellsl@apsu.edu, 18 Wescoatt, Ben, Valdosta State University, bmwescoatt@valdosta.edu, 15 Whitaker, Douglas, University of Florida, whitaker@ufl.edu, 32 White, Alex, NA, aw22@txstate.edu, 23 Wiest, Lynda, University of Nevada, Reno, wiest@unr.edu, 14, 26 Williams, Jared, Spokane Public Schools, JaredW@spokaneschools.org, 10 Winters, Jeremy, Middle Tennessee State University, jwinters@mtsu.edu, 33 Wohlhuter, Kay, University of Minnesota Duluth, kwohlhut@d.umn.edu, 33 Yee, Sean, University of South Carolina, yee@math.sc.edu, 26, 34 Young, Lanee, Fort Hays State University, lyoung@fhsu.edu, 27 Zambak, Vecihi, Clemson University, vzambak@g.clemson.edu, 8 Zenigami, Fay, University of Hawaii at Manoa, zenigami@hawaii.edu, 27, 34

Zollman, Alan, Indiana University Southeast, alanzoll@ius.edu,23