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RCML History 

The Research Council on Mathematics Learning, formerly The Research Council for 

Diagnostic and Prescriptive Mathematics, grew from a seed planted at a 1974 national 

conference held at Kent State University. A need for an informational sharing structure in 

diagnostic, prescriptive, and remedial mathematics was identified by James W. Heddens. A 

group of invited professional educators convened to explore, discuss, and exchange ideas 

especially in regard to pupils having difficulty in learning mathematics. It was noted that there 

was considerable fragmentation and repetition of effort in research on learning deficiencies at all 

levels of student mathematical development. The discussions centered on how individuals could 

pool their talents, resources, and research efforts to help develop a body of knowledge. The 

intent was for teams of researchers to work together in collaborative research focused on solving 

student difficulties encountered in learning mathematics. 

 

Specific areas identified were: 

 

1. Synthesize innovative approaches.  

2. Create insightful diagnostic instruments.  

3. Create diagnostic techniques.  

4. Develop new and interesting materials.  

5. Examine research reporting strategies. 

 

As a professional organization, the Research Council on Mathematics Learning (RCML) may 

be thought of as a vehicle to be used by its membership to accomplish specific goals. There is 

opportunity for everyone to actively participate in RCML. Indeed, such participation is 

mandatory if RCML is to continue to provide a forum for exploration, examination, and 

professional growth for mathematics educators at all levels. 

 

The Founding Members of the Council are those individuals that presented papers at one of the 

first three National Remedial Mathematics Conferences held at Kent State University in 1974, 

1975, and 1976. 
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Tonya Rhodes 

Oklahoma State University 

tmj@ostatemail.okstate.edu 

Jennifer Cribbs 

Oklahoma State University 

jennifer.cribbs@okstate.edu 

Juliana Utley 

Oklahoma State University 

juliana.utley@okstate.edu 

   

This study explored mathematics self-efficacy (MSE), spatial ability, and achievement for 65 

preservice teachers (PST). Findings indicate statistically significant differences between the 

secondary and elementary PST MSE scores with a moderate effect size on the overall MSE as 

well as the two subscales for this construct. The study also revealed that the spatial ability, GPA, 

and ACT scores were significantly higher for the preservice secondary teachers than for the 

preservice elementary teachers. The results indicate that the overall MSE and spatial ability had 

a moderate level of correlation. There were also moderate correlations among MSE, spatial 

ability and ACT scores.  

Introduction  

Spatial ability/reasoning has a deep and lengthy history in mathematics education research 

with much of this work exploring the connection of spatial ability with mathematics achievement 

(Fennema & Sherman, 1977; Uttal et al., 2013; Wang, 2020).  While there is some research 

exploring affective measures and spatial ability, such as math anxiety (Wang, 2020), there are 

limited studies exploring spatial reasoning with self-efficacy or making comparisons between 

elementary and secondary preservice teachers. One exception is with a study exploring students’ 

attitudes and spatial ability in conjunction with geography students (Shin et al., 2015). However, 

that study explored attitudes specific to spatial thinking. Another study explored self-efficacy, 

but it was specific to geometry (Dursun, 2010). With evidence that spatial ability and self-

efficacy are connected to various outcomes and choices (Jo & Bednarz, 2014; 

Skaalvik & Skaalvik, 2017), it is an important area for further research. The purpose of this study 

is to explore possible correlations between mathematics self-efficacy, spatial ability, and 

mathematics achievement for elementary and secondary preservice teachers (PSTs) as well as 

potential differences between elementary and secondary PSTs.  

Background Literature  

Mathematics Self-Efficacy  

Bandura (2001) defines self-efficacy as an individual’s belief in their ability to perform 

certain tasks. Extending Bandura’s work, researchers define mathematics self-efficacy as one’s 

belief that he/she can complete mathematics tasks/problems successfully (Hackett & Betz, 1989; 

Zuya et al., 2016). Preservice teachers’ self-efficacy has been connected with their occupational 
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commitment (Klassen & Chiu, 2011), instructional choices (Haverback, 2009), classroom 

management (Dussault, 2006), learner-centered beliefs (Dunn & Rakes, 2011), and a variety of 

other factors (see Zee & Koomen, 2016). These studies highlight the importance of exploring 

self-efficacy with PSTs as it connects to a variety of outcomes and behaviors.  

Spatial Ability  

Spatial ability is defined as the ability to manipulate and interact with one’s environment 

through two kinds of lenses: spatial visualization and spatial orientation (Owens, 1990). Spatial 

visualization is the ability to manipulate mental models through various transformations, which 

maintains the manipulator place in space while changing the placement of the model. The viewer 

stays but the object moves. Spatial orientation is the ability to see a mental model from various 

perspectives while the mental model remains still. In other words, the viewer moves while the 

object stays (see Harris et al., 2013; Ramey & Uttal, 2017).  

Battista (1994) goes further in his description of spatial ability by relating it to other mental 

processes particularly the cognitive mapping that learners use when learning new material. He 

argued that learners start with viewing a concept from multiple perspectives, then create 

landmarks for important ideas, and finally establish routes/connections between these landmarks 

in order to navigate the new conceptual framework. He also stated that these levels closely 

mirrored Van Hiele levels of geometric thinking, which suggests a vital connection between 

spatial ability and mathematics. When learners are presented with spatial reasoning problems, 

they must break down previously held ideas to forge new ones (Uttal et al., 2013).  

Research has also shown that there is a positive relationship between self-efficacy related to 

perceptions of spatial ability and spatial ability (Towle et al., 2005). However, much of this 

research explored measures other than self-efficacy and was not conducted with PSTs. Research 

also indicates that preservice teachers’ spatial ability is lower than other college majors, which 

can affect their pedagogical content knowledge and their ability to teach effectively in the 

classroom (Shin et al., 2015). With limited research on related factors (self-efficacy and 

achievement) with spatial ability as well as differences between elementary and secondary 

preservice teachers, our study addresses the following research questions: 

1. What are the mathematics self-efficacy, spatial ability and mathematics achievement for 

secondary and elementary preservice teachers? 
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2. What is the strength of association between preservice teachers’ spatial ability, 

mathematics self-efficacy, and achievement in mathematics (college math course grades and 

math ACT score)? 

3. Are there any significant differences among the mathematics self-efficacy, spatial ability 

and mathematics achievement for secondary and elementary preservice teachers? 

Method 

 Participants  

Preservice teachers (PSTs) in their last two years at a land grant university in the southwest 

were surveyed. The 65 participants included 26 secondary science and mathematics PSTs and 39 

elementary PSTs. Their mean age was 21.1 years, with 17% males and 83% females.  

Instruments  

The survey items included demographic items (e.g., gender, year in college, race, and 

ethnicity), the Purdue Visualization of Rotations (ROT) assessment to measure spatial reasoning, 

and the Mathematics Self-Efficacy Scale (MSES).  

Purdue Visualization of Rotations. The Purdue Visualization of Rotations (ROT) test 

consists of 20 multiple choice question items and has been shown to be a reliable and valid 

instrument for assessing spatial ability with preservice teachers (Jo & Bednarz, 2014). The ROT 

measures the ability to visualize rotations of three-dimensional objects and was revised by 

Bodner and Guay (1997). The ROT is scored with one point for a correct response and zero for 

an incorrect response with a possible range of 0 to 20.  

Mathematics Self-Efficacy Scale (MSES). The Mathematics Self-Efficacy Scale, developed 

by Betz and Hackett (1983), contains 34 items identified as relevant to the study of mathematics-

related self-efficacy expectations. The two subscales are (1) Mathematics Tasks -18 items and 

(2) Mathematics Courses -16 mathematics-related college classes. The response format is a ten-

point Likert scale ranging from (0) “no confidence at all” to (9) “complete confidence”. The total 

scores were found by adding the responses to all 34 items and then dividing the sum by 34 to get 

the average. Betz and Hackett (1983) reported an overall high internal consistency for the scale 

(r = .96), which matched the reliability score in this study (r = .96). 

Achievement. Informed consent was granted to obtain the grades from college math courses 

and math ACT score if available. Grades were used to calculate a grade point average (GPA).   
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Analysis 

To address Research Question 1, means were reported on elementary, secondary, and overall 

for spatial ability, ACT, GPA and self-efficacy scores for participants. To address Research 

Question 2, a Pearson correlation coefficient was calculated to determine if spatial ability and 

ACT scores for PSTs were correlated. A Spearman’s rho was performed to determine if spatial 

ability and mathematics self-efficacy scores or spatial ability and GPA for PSTs were correlated. 

Effect sizes were also reported with findings. Finally, to address Research Question 3, a Mann 

Whitney U test, due to homogeneity of variance being violated, was performed to determine if 

there were significant differences between elementary and secondary PSTs’ self-efficacy scores 

as well as GPA. In addition, an independent t-test was used to assess differences for spatial 

ability and ACT scores between elementary and secondary PSTs. 

Results 

Research Question 1 

To analyze data collected in the study, the means and standard deviations are reported in 

Table 1. These were used to examine the data for preservice teachers’ mathematics self-efficacy, 

spatial ability and achievement of preservice teachers (PSTs).  

Table 1 

Means and Standard Deviations for MSE, SA and Achievement of PSTs 

Construct 

 

Secondary (n=26) 

M (SD) 

Elementary (n=39) 

M (SD) 

Overall (n=65) 

M (SD) 

Spatial Ability 13.88 (3.30) 10.95 (3.85) 12.12 (3.90) 

Self-Efficacy    

      Overall MSE 6.58 (1.10) 5.34 (1.56) 5.84 (1.51) 

      MT-SE 6.88 (1.12) 5.68 (1.63) 6.16 (1.56) 

      MRSS-SE 6.25 (1.40) 4.96 (1.69) 5.48(1.69) 

Achievement    

      ACT 25.54 (3.40) 22.54 (3.83) 23.77 (3.92) 

      GPA 2.79 (0.86) 3.35 (0.53) 3.13 (0.73) 

Note: MT-SE – Mathematics Tasks Self-Efficacy, MRSS-SE – Mathematics Related School Subjects Self-

Efficacy   

 

Research Question 2 

The Pearson’s r and the Spearman’s rho were calculated to determine if a possible correlation 

existed among mathematics self-efficacy, spatial ability, GPA and ACT scores. Spatial ability 

and ACT scores, r (63) = .45, p < .001, as well as mathematics self-efficacy and spatial ability 
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were positively correlated, rs (63) = .39, p < .01. Mathematics self-efficacy and ACT scores was 

positively correlated, rs (63) = .58, p < .01.  

Research Question 3 

A Mann-Whitney U test indicated that the overall mathematics self-efficacy of the secondary 

PSTs (Mdn = 6.78) was significantly greater than that for the elementary PSTs (Mdn = 5.21), U 

= 259.00, p < .01 as well as the GPA of secondary PSTs (Mdn = 2.78) versus elementary PSTs 

(Mdn = 3.25), U = 313.50, p < .01 (see Table 2).  

Table 2 

Mann-Whitney for MSE and GPA of PSTs 

Construct 

 

Secondary (n=26) 

Mdn 

Elementary (n=39) 

Mdn 
p r 

Overall MSE 6.78 5.21 p < .01** -.41 

GPA 2.78 3.25 p < .01** -.32 

Note: ** = p < .01, Mdn = median  

 

An independent samples t-test indicated that the spatial ability scores were significantly 

higher for the preservice secondary teachers than for the preservice elementary teachers,              

t (63) = -3.186, p < .01, Hedges’ g = .80. Results also indicated that ACT scores for preservice 

secondary teachers were higher than ACT scores for preservice elementary teachers t (63) = 

3.178, p < .01, Hedges’ g = .82 (see Table 3).  

Table 3  

T-test for Spatial Ability and ACT of PSTs 

Construct 

 

Secondary (n=26) 

M (SD) 

Elementary (n=39) 

M (SD) 

t df 

Spatial Ability 13.88 (3.30) 10.95 (3.85) -3.19 63 

ACT 25.54 (3.40) 22.59 (3.83) -3.18 63 

 

Discussion 

In this study, we examined PSTs’ mathematics self-efficacy and spatial ability to determine 

the strength of association between these constructs and if there were differences between levels 

reported by elementary and secondary PSTs. The descriptive statistics reported for the first 

research question found that both elementary and secondary PSTs scored relatively low on the 

spatial reasoning test, with an overall mean of 12.12 out of 20. However, these results are 

consistent with previous research findings with undergraduate students (see Bodner & Guay, 

1997). Additionally, we found that the overall mean for PSTs’ mathematics self-efficacy was 
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high (5.84 out of 9). This finding is also consistent with prior research indicating that PSTs tend 

to self-report positive beliefs such as mathematics teaching self-efficacy (Briley, 2012; Giles et 

al., 2016).  

With regard to the second research question, results indicate that mathematics self-efficacy 

and spatial ability are positively associated for PSTs. This result might not be surprising given 

that achievement and other skill-based assessments have been shown to correlate or predict 

mathematics related beliefs (Giles et al., 2016; Paunonen & Hong, 2010; Uttal & Cohen, 2012). 

For example, Paunonen and Hong (2010) found that self-efficacy was predictive of performance 

on spatial tasks. However, it is curious that a stronger correlation was not found between the two 

constructs given the connection between self-efficacy and performance in prior research.  

The third question explored the differences in spatial ability and mathematics self-efficacy 

between elementary and secondary PST.  We found that secondary PST’s reported significantly 

higher levels of self-efficacy, Mathematics Tasks and Mathematics Courses, than elementary 

PSTs. This finding may be due to varied experiences between the groups of PSTs. For example, 

secondary PSTs take a large number of mathematics courses, which provides them with more 

opportunities that could build spatial reasoning. The finding that elementary PSTs’ MSE overall 

score was lower than secondary PSTs might indicate a connection between certain students’ 

choice to pursue elementary education instead of secondary education, given prior work 

indicating students’ mathematics self-efficacy was a strong predictive effect over choices in 

college (Parker et al., 2014).  

Limitations and Impli cations 

One limitation of this study was that elementary and secondary PSTs were not necessarily at 

the same point in their education program. Some PSTs were earlier in their program than others; 

although, all PSTs were given the survey and assessment in a mathematics methods course.  

Another limitation is that the sample population of this study was predominately female. 

According to many previous studies (e.g., Maeda & Yoon, 2013) females have been noted to 

have lower spatial ability scores on timed mental rotation tests, which might have influenced the 

results found.  

Gauging PSTs’ mathematics self-efficacy and spatial ability throughout their training 

programs can give teacher preparation programs a means to evaluate the growth of these 

constructs over the course of their college coursework. For example, pre- and post-tests could 
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illuminate the effectiveness of methods courses’ intentional interventions targeting spatial 

ability. Methods courses including activities to support building spatial ability could also be used 

by PSTs in their future classrooms, which is important to consider given the connection between 

spatial ability and children’s mathematics achievement (Gilligan et al., 2017). Uttal and 

Cohen (2012) also suggested that widespread implementation of spatial ability training could 

have an overall small positive effect on retention outcomes in STEM majors in comparison to the 

small cost of such training.  
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Mathematics-related beliefs have been shown to have a significant impact on teachersô 

pedagogical decisions and instructional practice. There has been an increased focus describing 

the development and content of preservice teacher beliefs. This study reports the beliefs of 

elementary preservice teachers and summarizes learning experiences participants claim had a 

significant impact on their view of mathematics and mathematics learning. Participants in the 

study indicated they held beliefs that were consistent with a cognitive constructivist view of 

mathematics and largely described learning experiences which were consistent with those 

beliefs. 

Introduction  

Researchers (e.g., Minarni, et. al., 2018) have shown that teaching practice is highly 

influenced by a teacher’s beliefs. Results such as these have led researchers to explore the 

mathematics-related beliefs of preservice elementary teachers (PETs) in order to promote beliefs 

that may lead to effective teaching practices. However, these studies (e.g., Purnomo et al., 2016) 

have focused on characterizing PETs’ beliefs and left the development of those beliefs largely 

unexplored. Pajares (1992) argued that PET beliefs about teaching mathematics are likely linked 

to beliefs formed from learning experiences that occurred throughout their PK-12 education. 

Thus, the purpose of this research is to describe significant educational experiences that 

preservice elementary teachers say had an impact on their mathematics learning. Further, this 

research will describe the mathematics-related beliefs of PETs and begin to explore relationships 

between past experiences and current beliefs. Therefore, the specific research questions guiding 

this study were: What mathematics related experiences tend to stand out for preservice teachers? 

What beliefs do PETs hold about mathematics and the teaching and learning of mathematics? 

Background Literature  

Mathematics-Related Beliefs  

According to Philipp (2007) beliefs are defined as “psychologically held understandings, 

premises, or propositions about the world that are thought to be true” (p. 259). Teachers’ 

mathematics-related beliefs have been linked to their instructional decisions (e.g., Stipek et al., 

2001; Wilkins, 2008), how they interact with mathematics curriculum (Collopy, 2003), and 
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student achievement (e.g., Šapkova, 2014). In mathematics education research, mathematics-

related beliefs are often grouped into two related, yet distinct sets of beliefs: beliefs about the 

nature of mathematics and beliefs about the teaching or learning of mathematics. Thompson 

(1992) characterized beliefs about the nature of mathematics as a “teacher’s conscious or 

subconscious beliefs, concepts, meanings, rules, mental images, and preferences concerning the 

discipline of mathematics” (p. 132). Grigutsch et al. (1998) suggested four characterizations of a 

teacher’s beliefs about the nature of mathematics: formalism-related, scheme-related, process-

related, and application-related orientation. In addition, they suggest that the formalism-related 

and scheme related orientations both suggest a static view of mathematics where the process-

related and application-related orientations correspond to a dynamic view of mathematics.  

According to Staub and Stern (2002), beliefs about teaching and learning mathematics fall 

into two categories: a direct-transmission view and a cognitive constructivist view. A direct- 

transmission view of teaching and learning suggests that students will learn as long as the teacher 

provides opportunities for adequate practice and well-structured learning environments. 

Typically, a teacher that holds a direct-transmission view of teaching does not make a distinction 

between understanding and procedural fluency. One who holds beliefs consistent with a 

cognitive constructivist view; however, emphasizes learning experiences based on the needs of 

the learner and believes “understanding is based on the restructuring of one’s own prior 

knowledge from the very beginning of the learning process” (Staub & Stern, 2002, p. 345). 

Although research has been done which attempts to characterize beliefs of various groups 

(e.g., preservice teachers), there has been little research that explores what led to the 

development of the mathematics-related beliefs that preservice teachers hold. In his foundational 

work characterizing the nature of beliefs, Abelson (1979) suggested that beliefs are often 

grounded in episodic material and personal experience. Furthermore, according to Pajares 

(1992), early experiences have the potential to impact belief formation because beliefs have the 

potential to be self-fulfilling. Because beliefs likely have an impact on behavior, they are able to 

influence our experience, which in turn can reinforce the original belief. This characteristic of 

beliefs is particularly important for beliefs related to teaching. In most cases, students begin 

college with relatively few experiences related to their chosen field. As a result, much of their 

beliefs can be formed as they learn about and gain personal experience in their chosen fields. 
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This, however, is not the case for PETs. As Nespor (1987) suggests, one’s significant experience 

as a learner or a particularly influential teacher may lay at the root of one’s views of teaching. 

Mental Model Theory 

This research is grounded in both mental model theory and the use of drawings as a way to 

characterize PETs’ experiences with mathematics. In commenting on mental model theory, 

Johnson-Laird (1983) explains that mental models are cognitive structures and that an individual 

constructs a representation of a phenomena in their world based on how they perceive, imagine, 

and recall that phenomena in order to make sense of their world. Thus, an individual constructs 

mental models about mathematics through their experiences with mathematics and then uses 

these mental models to interpret, understand, and reason about their world (Jacob & Shaw, 

1998). It follows that the mental models that one constructs about mathematics will influence 

one’s expectations, experiences, and how they acquire new knowledge.   

Researchers have indicated, “a person’s mental model reflects his/her belief system, acquired 

through observation, instruction, and cultural influences” (Libarkin et al., 2003, p. 123). 

Additionally, Nespor (1987) differentiated between beliefs and knowledge indicating that an 

individual will meaningfully store knowledge but their beliefs are drawn from their lived 

experiences such as one’s experiences with mathematics. This allows one to explore PETs’ 

beliefs through their mental models. Participant-created drawings that capture an individual's 

mental images of their experiences have been used to explore their mental models. For example, 

drawings have been used to analyze PETs’ mental models of themselves as a teacher of science 

(Thomas et al., 2001) and as a teacher of mathematics (Utley & Showalter, 2007) as well as their 

representations of doing mathematics (Wescoatt, 2016), the environment (Moseley et al., 2010), 

and the work of an engineer (Hammack et al., 2020).   

Methods 

 Participants  

The participants in this study consisted of 22 female PETs enrolled in their second of two 

elementary mathematics methods courses in a large mid-western university. Nearly all (n = 21) 

of the participants identified as white, with the remaining student identifying as Black or African 

American. Participants ranged in age from 21 to 27 years with an average age of 21.5 years.   
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Instruments 

Three Experiences Drawings. In order to capture learning experiences that may have 

influenced the participants’ mathematics-related beliefs, each participant was asked to complete 

a Three Experiences protocol which is composed of two steps. First, participants list three 

experiences that they feel had a significant impact on them as a learner of mathematics. Second, 

participants illustrate and reflect upon these experiences in order to describe feelings and 

emotions associated with those experiences. 

TEDS-M. To measure mathematics-related beliefs, this study utilized the TEDS-M Beliefs 

about Mathematics and Mathematics Learning instrument, which is composed of five subscales, 

grouped into three categories. First, beliefs about the nature of mathematics are measured using 

the Mathematics as a Set of Rules and Procedures subscale (six questions) and the Mathematics 

as a Process of Enquiry subscale (six questions). Second, beliefs about learning mathematics are 

measured using the Learning Mathematics through Following Teacher Direction subscale (eight 

questions) and the Learning Mathematics through Active Involvement subscale (six questions). 

Finally, the beliefs about mathematics achievement are measured by the Mathematics as a Fixed 

Ability subscale (eight questions). Together these scales consist of 34 Likert-type questions 

where participants respond to questions by indicating their level of agreement with the statement 

using a 6-point Likert scale (1: strongly disagree to 6: strongly agree). The scales were designed 

in such a way that a response of a five or six was considered an endorsement of the statement 

(Tatto et al., 2012).  

Analysis and Results 

Research Question 1 

To analyze drawings, the research team first independently used open coding to identify and 

label initial codes to units of data within each student’s drawing and description. Next, the two 

independent researchers’ codes were discussed until a consensus was reached for each code. 

Using axial coding, researchers identified relationships among the open codes to group open 

codes into categories. Since many of the experiences also described strong feelings and 

emotions, each experience was coded holistically as either positive, negative, or neutral.     

Overall, PETs’ experiences with mathematics tended to be either positive (38.3%) or 

negative (40.0%); however, nearly one-fourth (21.7%) were either truly neutral or had a balance 

of negative and positive aspects within the depiction of the experience. Additionally, 
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examination of the grade levels associated with the three experiences that came to mind revealed 

that one-third of all experiences reported were at the elementary level and one-fourth at the high 

school level. In another one-fourth of the responses, the grade level was not able to be 

determined and the experience was presented as occurring repeatedly. For example, one student 

commented that she noticed that she would solve problems “different than others around me” 

which lead to “the feeling of not doing problems right”. However, this description was not tied to 

a particular experience but instead reflected her feelings throughout her K-12 experiences. 

Several major categories arose from the coding process including parents, teachers, time, 

attitudes, and performance perceptions. Responses that fell within the parents’ category tended to 

indicate that their parents were helpful and supportive, such as “my dad used to hang up posters 

around the house to help me learn my math facts...positive math memories.” Some indicated that 

parents were not helpful because they were not aware of how the teacher was teaching or that 

parents helping with homework often led to an emotional response such as “some yelling and 

some crying.” Figure 1 provides an example of a response that fell within the parent category as 

not helpful. The image shows, a dad attempting to support their child with their mathematics 

homework and the frustrations that often arose. 

Figure 1 

Sample Student Illustration and Reflection upon a Mathematical Learning Experience 

 

The category of teachers fell into two major subcategories related to either teacher instruction 

or the learning environment. Students who reported positive experiences related to teacher 

instruction described liking step by step modeling of examples or getting to use manipulatives to 

help them understand. However, negative experiences were more prevalent. Responses revealed 

that students had negative experiences with timed activities (particularly the very common timed 

basic facts tests), the teacher “being bad” at teaching mathematics, pacing by the teacher being 

too fast, and several students indicated that the teacher expected them to solve problems using a 
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prescribed process. Similarly, some students described positive or negative experiences related to 

the learning environment established by the teacher. For example, some students indicated that 

they recalled teachers who were kind and supportive, had positive attitudes towards students and 

their learning, and made them feel they were valued as a student. However, other students 

described learning environments that made them feel stupid, frustrated, and uncomfortable 

asking questions.  

Time was another theme that emerged. Time emerged primarily in relation to timed basic 

fact tests. Overwhelmingly, students stated that these timed tests generated anxiety and 

frustration about mathematics. However, some students did reflect positively on timed activities 

because they enjoyed the competition that inevitably arose. Attitudes were also prevalent 

throughout the responses. Students expressed attitudes related to a lack of confidence (e.g., “not 

confident in my ability), feelings of anxiety, and their view of the usefulness of mathematics in 

their life (e.g., learning contexts such as money and time). Lastly, some students' responses were 

associated with perceptions of their performance in learning mathematics. For example, students’ 

comments included “I failed to understand a single concept of what was happening,” “nothing 

made sense,” or “oftentimes when I am doing math I feel that I am behind the rest of the class.” 

Research Question 2 

To explore PETs’ beliefs about mathematics and learning mathematics, TEDS-M beliefs data 

was imported into a statistics software, coded, and then descriptive statistics were calculated (see 

Table 1). Due to the small sample size, the Cronbach Alpha values were acceptable but slightly 

smaller than the established instrument. Results indicate that PETs endorse the belief that 

mathematics is a process of enquiry and that mathematics learning occurs through active 

involvement. Further, the PETs disagreed with the belief that mathematics learning should be 

teacher-directed and that mathematics is a fixed ability. Finally, PETs tended to slightly agree 

with the belief that mathematics is a set of rules and procedures.  

Table 1 

Mathematics-Related Beliefs (n = 22) 

   

Construct M SD Min Max Study   Established*   

Rules and procedures 4.31 0.61 3.00 5.00 0.74 0.94 

Process of enquiry 5.33 0.47 4.67 6.00 0.78 0.91 

Teacher direction 2.47 0.82 1.25 4.13 0.84 0.86 

Active involvement 5.07 0.52 4.17 6.00 0.71 0.92 

Fixed ability 2.18 0.93 1.00 4.25 0.84 0.88 

*Tatto, (2013)       
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Conclusions  

First, results of this study indicate that PETs believe mathematics to be a process of enquiry 

that is learned through active involvement. This suggests they hold beliefs that are consistent 

with a cognitive constructivist view of mathematics learning (Staub & Stern, 2002). However, 

there is evidence that PETs also hold some beliefs that are inconsistent with this view as they 

tended to agree with the belief that mathematics is a set of rules and procedures. Second, PETs 

indicated both positive and negative past experiences had significant impacts on their learning of 

mathematics. Experiences indicated by PETs tended to center around parents, teachers, time, 

attitudes, and performance perceptions. In addition, analysis of these experiences suggests that 

descriptions of learning experiences consistent with a cognitive constructivist approach were 

largely associated with positive feelings and attitudes, while those that were not consistent with a 

cognitive constructivist approach were often associated with negative feelings and attitudes. 

Future research will include a larger sample size and continue to explore potential relationships 

that may exist between PETs’ beliefs and their prior learning experiences. Additionally, given 

the number of negative experiences that participants described, future research could explore 

why these PETs are pursuing a degree in elementary education. 
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The Mathematical Education of Teachers II report by the Conference Board of the Mathematical 

Sciences (2012) recommends that undergraduate programs enhance prospective secondary 

mathematics teachersô (PSMTs) understanding of connections between the advanced 

undergraduate mathematics content and the mathematics they will teach. This paper examines 

the connections to teaching made by one instructor and one undergraduate PSMT after 

implementation of two calculus lessons aimed at supporting connections to teaching. Each 

lesson embedded approximations of practice tasks in the learning of calculus content. Findings 

suggest that these lessons enabled both deepening mathematical content knowledge and insight 

into the work of teaching. 

 

Calculus is a gateway course for science, technology, engineering, and mathematics majors 

and is part of every PSMTs’ program of study. It is quite common to embed applications to 

physics, biology, or chemistry in calculus courses, but despite recommendations from the 

Conference Board of the Mathematical Sciences’ (CBMS) Mathematical Education of Teachers 

II (MET II) report (CBMS, 2012), applications to teaching that make explicit connections 

between advanced content in mathematics to mathematics taught in secondary schools are much 

less common (e.g., Lai & Patterson, 2017). As the MET II report encourages making connections 

to teaching throughout a prospective teacher’s mathematics program of study, the Mathematical 

Education of Teachers as an Application of Undergraduate Mathematics (META Math) 

project’s initial focus has been on developing lessons in calculus, discrete mathematics, abstract 

algebra, and statistics, typical undergraduate mathematics courses in which PSMTs enroll. 

For each course, META Math developed two lessons focused on building connections to 

teaching via applications of mathematics to teaching and collected data on implementation at 

over 14 universities nationwide. 

As part of a larger study, this paper explores one instructor’s experiences implementing two 

META Math lessons in calculus and one PSMT’s experiences with the lessons. We focus on how 

the lessons support instructors’ and undergraduates’ awareness of connections to teaching. We 

explore the following research question: In what ways does the use of applications to teaching in 

calculus support an instructors’ and an undergraduates’ awareness of the role of connections to 

teaching in a mainstream mathematics course?  

mailto:james.alvarez@uta.edu
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Background and Theoretical Perspective 

Mathematical Knowledge for Teaching (MKT) was studied by Ball et al. (2008) as being 

“the mathematical knowledge needed to carry out the work of teaching mathematics” (p. 395).  

While the MET II (CBMS, 2012) recommends that future teachers make connections between 

advanced and school mathematics throughout their mathematics program, there are few studies 

that show that future teachers are making these connections in their undergraduate mathematics 

programs. Wasserman (2018) found that “teachers and their students appear to gain little from a 

teacher’s study of advanced mathematics” (p. 4). Other researchers have noted that PSMTs have 

found the advanced content to be disconnected to what they will one day teach, or even that they 

do not understand the foundational concepts at a deep enough level to teach them (e.g., Goulding 

et al., 2003; Wasserman et al., 2018).  

For university mathematics instructors, identifying and using appropriate resources poses 

unique challenges as many are unfamiliar with MKT, how to highlight connections to teaching in 

a mainstream course, how to identify applications to teaching in their extant curriculum, or the 

role of applications to teaching for PSMTs (Álvarez & Burroughs, 2018; Lai, 2016).  

Ball et al. (2008) proposed that a skill necessary for teachers was to be able to “hear and 

interpret students’ emerging and incomplete thinking” (p. 401). Incorporating experiences 

throughout teacher preparation programs that engage undergraduates in practices used in 

mathematics teaching can take the form of including approximations of practice tasks in 

mainstream courses. Grossman et al. (2009) describes these tasks as “opportunities to engage in 

practices that are more or less proximal to the practices of a profession” (p. 2058; see also 

Álvarez et al. 2020). For example, Ghousseini and Herbst (2016) use constructed dialogues and 

Campbell et al. (2020) employ “planted errors” to approximate the work of teaching 

mathematics. 

Methodology 

To incorporate mathematics teaching connections as a legitimate application area of 

undergraduate mathematics, the META Math project developed inquiry-based lessons for 

calculus that address MKT and the recommendations of the MET II (CBMS, 2012) report. The 

lessons consist of content-specific and pedagogical connections to engage undergraduates in 

connections to teaching. Several tasks in the lessons require students to analyze a hypothetical 

student’s work or choose or pose guiding questions for probing student thinking (e.g., Figure 1). 
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Figure 1 

Assessment Example from Newtonôs Method 

 

The calculus lessons used by the instructor and PSMT in this study focused on inverse 

functions and Newton’s method.  Inverse Functions reviews commonly taught methods of 

finding an inverse function and explores how these methods influence the formulation of 

derivatives of inverse functions. Newtonôs Method introduces undergraduates to an iterative 

method of approximating the zeros of a function by looking at hypothetical students’ work of 

using tangent lines at points on the function to see where the line intersects the x-axis. Both of 

these lessons incorporate opportunities to analyze another student’s work. 

The META Math lessons incorporate five types of connections to teaching between college-

level mathematics and knowledge for teaching school mathematics (see Table 1). Arnold et al.  

derived these connections from Ball et al.’s (2008) six categories of MKT (as cited in Álvarez et 

al., 2020). Both lessons consist of an activity-based lesson (separated into pre- and class-

activities), homework questions, and assessment items. Instructors receive a detailed annotated 

lesson plan (ALP), which serves as a guide for implementing the lessons effectively.  

Table 1 

Five Types of Connections to Teaching (Álvarez et al., 2020) 

Connection Description 

Content Knowledge (CK) Undergraduates use course content in applications or to answer 

mathematical questions in the course. 

Explaining Mathematical 

Content (EC) 

Undergraduates justify mathematical procedures or theorems and 

use of related mathematical concepts. 

Looking Back / Looking 

Forward (FB) 

Undergraduates explain how mathematics topics are related over a 

span of K-12 curriculum through undergraduate mathematics. 

School Student Thinking 

(ST) 

Undergraduates evaluate the mathematics underlying a student’s 

work and explain what that student may understand. 

Guiding School Studentsô 

Understanding (GSU) 

Undergraduates pose or evaluate guiding questions to help a 

hypothetical student understand a mathematical concept and 

explain how the questions may guide the student’s learning. 

 

Setting and Participants 
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In the Fall 2019 semester two instructors at two different universities implemented both first-

semester calculus lessons in their calculus courses. The universities are both large public 

research universities in the Midwest and Southeast United States, respectively. As part of their 

participation in the project, instructors were also invited to three interviews that occurred during 

the semester. All undergraduates in these courses, as part of their regular coursework, completed 

all parts of each lesson. We invited a subset of consenting undergraduates to participate in an 

hour-long semi-structured interview at the end of the semester. From a total of 63 consenting 

undergraduates, six undergraduates from each site consented to participate in interviews. For this 

paper we will focus on one instructor, Bruce, and one of his undergraduate students, Kayla. 

Bruce has taught calculus for the last 15 years. At his institution, calculus is not a coordinated 

course. His department has 174 mathematics majors, about 20% are PSMTs. Kayla intends to 

teach middle school mathematics. She is an interdisciplinary liberal studies major with a minor 

in mathematics. We chose Bruce as a representative case as he is an experienced calculus 

instructor with no prior experience using these pedagogical ideas. Kayla was chosen as a critical 

case as the only self-identifying PSMT in the course. Participants were given pseudonyms.  

Data Collection and Analysis 

Both instructor and undergraduate interviews lasted between 45-60 minutes and were audio-

recorded and transcribed. During the undergraduate interviews, students re-examined their work 

on the assessment items from each interview (e.g., Figure 1). While reconsidering their work, 

they provided explanations of their thought processes where appropriate, considered alternative 

approaches, and discussed the potential connections to previous math content. Interview 

questions were often posed through the lens of connections for teachers, but interviewees 

discussed their own perceptions of the assessment items and connections to teaching emphasized 

in the lesson regardless of their intent to formally teach in a classroom environment.  

There were three instructor interviews, two occurred shortly after each lesson was taught, 

which focused on how the implementation went and how prepared instructors felt to teach the 

lesson based on the provided resources. At the end of the semester, the third interview reviewed 

both lessons, eliciting instructors’ views of the project and the five types of connections.  

We used thematic analysis (e.g., Braun & Clarke, 2006; Nowell et al., 2017) to qualitatively 

analyze the interview transcriptions. Each interview was first coded for the five connections to 

teaching. These codes were then expanded inductively with any emergent thematic ideas. 
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These additional codes tended to relate to teaching, implementation of the lesson, or the format 

of the activities. Once each lesson was coded independently, we compared codes until we were 

in agreement. Less pervasive codes, such as those that did not relate to the types of connections 

or were only present in one interview, were eliminated or integrated into broader categories.  

Results 

Bruce 

While preparing for both lessons, Bruce reported carefully reading through the ALP a week 

before implementation. Bruce had students complete the pre-activity in class to gauge, based 

upon their work, the undergraduates’ prior knowledge of the topics. During the next class, he 

began with a brief discussion of the pre-activity before undergraduates worked on the class 

activity in groups. Bruce’s class took two class periods to complete the activity. He found that 

the materials, especially the ALP, prepared him to implement the lesson, although he was 

unprepared for how little his students remembered inverse functions from past math courses.  

While discussing his views on the five types of connections and how they influenced his 

teaching, Bruce points out that ST and GSU were connections he had not previously considered 

using in his mathematics teaching. He said that he does not often consider questions like that in 

Figure 1 because they are not “really relevant to [him] directly.” After seeing how his 

undergraduates had responded to these questions, he added that if he had even one future teacher 

in his class he would “be thinking more clearly about [those connections] and trying to make ties 

[to school mathematics].” When discussing his experiences implementing Inverse Functions, he 

explained that he often hesitates to show others’ work because of time constraints and privacy 

issues, but by looking at hypothetical students’ work, he found it “valuable and worth [his] time” 

to see students interacting with others’ work and that “it can be really useful for students to 

observe other students work. As opposed to just my pre-scripted, professor style writing.” 

Bruce also discussed how he sees a difference in the way he might present content with these 

connections in mind, especially CK and FB. He mentions that normally, as a mathematics 

professor, he wants “to emphasize [the] fancy ways of solving hard things” but that is not always 

“what’s most useful for the students.” He then explains that for future high school teachers 

having a strong background in these connections to then be able to teach the content to school 

students would be most helpful. He learned better scaffolding techniques for tasks when 

implementing the lessons and realized the importance of scaffolding material, especially for 
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future teachers. Building connections to teaching resonates for Bruce as it is coupled with the 

rigor of an undergraduate course. For Inverse Functions, he acknowledges the appropriateness of 

the content for all of his undergraduate students, specifically that this lesson is “crucial for 

anyone whose major requires [calculus].” As mentioned, he also realized “how little about 

inverse functions [his students] remember.” This allowed him to provide support from which to 

build the class activities. For Newtonôs Method he said that he was “going to entirely use the 

Newtonôs Method worksheet… [it] was a great take-away, content-wise.” Overall, Bruce 

recognized that these lessons were both appropriate for future teachers and other students.  

Most of Bruce’s undergraduates were not PSMTs, but he indicated that he wanted to 

motivate these connections for all of his students by emphasizing that many fields require 

explaining content or analyzing someone’s thinking; so, for non-PSMTs, Bruce highlighted 

communication skills as important outside of a classroom environment. He found the lessons 

easily adaptable and suitable for all students while maintaining fidelity to the connections to 

teaching. 

Kayla 

Kayla plans to teach middle school mathematics after getting her master’s degree in 

education. We focus on Kayla since she was the only PSMT in Bruce’s class. Kayla participated 

in both class activities for the lessons and then consented to participate in an end of the semester 

interview about her experiences during those days where the lessons were implemented. 

Kayla said that she “loved” having the experience with student work and posing guiding 

questions. She saw a direct connection to teaching since she expects to see children’s work that 

displays unfamiliar strategies or methods or that may not be thorough enough to readily 

determine the strategies or methods used. She also indicated that she had fun looking at student 

work and decoding “what they have done in their thought processes” when it was not possible to 

speak with them directly. Moreover, Kayla saw the depth of the mathematical thinking required 

in the lessons as an important feature for her as a prospective teacher since “there's always going 

to be the kid who's curious in your class as to why things work, and I think it's really important to 

… have some understanding and then be able to be like well I, maybe I don't know why, but why 

don't we figure it out together.” Kayla also commented, “I think a lot of people who maybe don't 

have upper level math understanding will shut that down out of fear of like, not knowing the 

answers themselves.” This was linked to stunting school students’ interest in math and contrasted 
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with “being able to like explore stuff like this and be comfortable with exploring it … really, it's 

gonna benefit students in the future, being able to help them explore math too.” 

Kayla discussed that explaining mathematical content in the lessons provided insight into 

connections to teaching. When engaging in the Inverse Functions activity she recognized the 

value in explaining her work as it mirrors what she would want her future students to do. 

Looking forward she adds that, “as a future teacher you want your kids to know the meaning of 

the work that’s behind what they’re doing, you don’t just want to memorize steps.” She then 

explains that this lesson reinforced ideas that she would want her future students to have, such as 

a good grasp of definition usage and conceptual understanding versus overreliance on formulas. 

Kayla found the structure of both lessons to be good models for an inquiry-oriented class 

environment. She commented that she could apply the scaffolded approach in her future lessons. 

The chance for students to “explore the meaning [of these topics] for themselves” tied into her 

belief that the concepts will “stick with kids more” when actively engaged in learning. Having 

students actively work through the steps aligned with her belief in having students “understand 

something for themselves and make connections.” Recognizing the connections to high school, 

Kayla explains that understanding “basic algebra and … graphing and lines” would prepare a 

student for investigating Newton’s method. She expressed that revisiting and applying these 

connections would better prepare her for explaining elementary ideas to her future students. 

Discussion and Conclusion 

Both Bruce and Kayla reported that concepts in the lesson helped them see connections to 

teaching, especially the problems that presented a hypothetical student’s thinking which then had 

to be analyzed. Kayla expresses not only her appreciation for the student thinking questions 

addressing the needs of future teachers’ development of communication skills, but also addresses 

the connection Looking Back/ Looking Forward discussing how knowing advanced content can 

help a teacher explain concepts to curious students that may require more justification.  

Kayla found that the lesson structure helped her see the need to scaffold concepts to students, 

and Bruce said that the use of scaffolding benefited all students, especially PSMTs. Each 

reported that the approximation of practice tasks supported their awareness of connections to 

teaching. Bruce recognized the importance of including these tasks in his course and how they 

address the needs of all students. Using the materials raised his awareness of the needs of PSMTs 

in his courses and the importance of integrating these ideas throughout the curriculum. 
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Successful everyday activity with others is possible by building shared understanding (i.e., 

common ground). During a mathematical lesson, building common ground is a challenging but 

essential factor that affects the mathematics learning of a classroom community. In this paper, I 

analyzed the micro-interventions a secondary mathematics student teacher made to build 

common ground with students to support them in making a mathematical connection. The 

analysis supports the assertion that teachers can begin to specialize their everyday practice of 

building common ground for teaching given time and experience. 

 

Introduction and Relevant Literature 

Speakers will adapt their speech and gestures to be understood by addressees, which some 

refer to as audience design (Clark & Carlson, 1982). The speaker’s adaptation is an attempt to 

build or maintain common ground, or a shared mutual understanding. Common ground is 

essential for all joint activity (Clark, 1996), such as whole-class mathematical inquiry (Staples, 

2007). Much of the research on common ground has taken place in clinical research settings, and 

so, I briefly reference key findings from relevant clinical studies for interpreting the data. For 

instance, speakers will use commonality assessments to monitor and adjust for the needs of 

addressees (Horton, 2005). In conversation, for example, a speaker might ask, “Remember what 

happened last time?” The speaker’s question assesses what they share in recalling a previous 

event. Speakers will also use more gestures when they know that the information is highly 

relevant to addressees (Kelly et al., 2011). Speakers may furthermore adjust their gestures (e.g., 

change the speed or form) when facilitating addressees’ identification of specific visual features 

(Peeters et al., 2015).  

There is a growing number of research studies investigating common ground in mathematics 

classrooms. Staples (2007) described several strategies that an expert secondary mathematics 

teacher used to establish and monitor common ground during whole-class collaborative inquiry 

(e.g., pursuing discrepancies), which she organized into three themes: (a) creating a shared 

context, (b) maintaining continuity over time, and (c) coordinating the collective. Alibali and 

colleagues focused their research on how teachers’ gestures establish and maintain common 

ground during instruction (e.g., Alibali et al., 2013, 2019; Nathan et al., 2017). For instance, to 
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build common ground, Alibali et al. (2013) found teachers will increase their use of gestures in 

response to students displaying or expressing lack of understanding. 

These studies on common ground in mathematics classrooms describe how experienced 

teachers build and maintain common ground. They, however, do not provide insight into whether 

novice teachers can begin to build or maintain common ground, if at all. Therefore, I examined 

the practice of secondary mathematics student teachers to see if they would make similar 

attempts to building common ground. I focused on classroom interactions of making 

mathematical connections because explicit attention to connections are generative of students’ 

learning (Hiebert & Carpenter, 1992). 

Theoretical Framework 

Clark (1996) distinguished different domains for common ground: communal, personal, and 

incremental. For this paper, personal and incremental common ground are particularly relevant. 

Personal common ground is the shared knowledge between speaker and addressee(s) resulting 

from prior experience or current situation. For example, a teacher and students may share a 

common understanding of the meaning of a fraction developed from previous lessons. 

Incremental common ground is the moment-by-moment shared understanding that the speaker 

and addressee(s) establish in conversation. For example, a teacher and students may gradually 

build a shared understanding of equivalent fractions over lessons.  

According to Horton and Gerrig (2002), the details of speakers’ experiences need to be 

accounted for when making claims about the presence of audience design because “Speakers 

may intend quite sincerely to tailor their productions for a specific audience, but lack the 

knowledge or resources to carry out these intentions fully” (p. 605). Horton and Keysar (1996) 

also argued a speaker’s initial utterances are not always in consideration of common ground, but 

rather the speaker will monitor and adjust for the addressees’ needs.  

Methodology 

  Context and Data 

The study was an instrumental case study (Stake, 2003). Melissa and Robin (pseudonyms) 

were selected for this study from their participation in a larger research project that followed a 

cohort of secondary mathematics teachers in their teacher education program. During their 

student teaching, Melissa and Robin co-planned and co-taught two sections of an advanced ninth 

grade mathematics course. Data included lesson materials and video-recordings across the same 
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unit of instruction for each section. In this paper, I present the initial findings from the second 

lesson from the unit. Robin was the lead teacher for the lesson for both classes.  

The goal of the lesson was for students to be able to find a point on a directed line segment 

that partitioned the line segment in a given ratio. For example, if points ὃ υȟφ and 

ὄ τȟρρ formed a line segment, then find a point on the line segment from ὃ to ὄ that 

partitioned the line segment in a ratio of 2 to 3. Students were to explore partitioning a line 

segment on a number line and then generalize a formula to partition any line segment on a 

number line in a given ratio. Figure 1 is a recreation of the exploratory task. After generalizing a 

formula for the number line, students were to derive a formula to partition any line segment in a 

coordinate plane, which the teachers referred to as the partitioning formula. The formula resulted 

in a point, ὼ ὼ ὼȟ ώ ώ ώ , that partitions a line segment formed by 

points ὼȟώ  and ὼȟώ  into a ratio from ὥ to ὦ. After deriving the partitioning formula, the 

teachers assigned students problems to practice applying the formula (work period). 

Figure 1 

Exploratory Task for Partitioning a Number Line. 

 

Data Analysis 

I began the analysis by transcribing all the video-recordings for each lesson. In phase one, I 

iteratively watched the video-recording of each class in 5- to 10-minute increments and noted the 

content-related episodes in the lessons. A content-related episode included activities such as 

discussing a solution to a mathematical task and not the day-to-day operation of school (e.g., 

checking attendance). In phase two, I created side-by-side transcripts of similar content-related 

episodes across the two class sections. After re-watching each episode, I enriched the transcripts 

by describing teachers’ gestures and noting representations teachers or students displayed. I also 

noted trouble spots, which included students’ questions seeking clarity of a teacher’s meaning, 

students’ incorrect responses to a teacher’s question, and uncertainty or hesitancy in students’ 

responses. In phase three, I created memos next to the side-by-side episode transcripts to 
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describe the contexts, conditions, and teacher actions using the constant comparative method 

(Glaser & Strauss, 1967) for each episode. In phase four, I compared across memos noting 

similarities and differences in teachers’ responses to build and establish common ground during 

the episodes and how they aligned, if at all, to results from clinical and field research. 

Results 

Several trouble spots (e.g., students expressing uncertainty) occurred during the lesson. In 

this paper, I focus on one trouble spot that arose in the first enactment of the lesson but not in the 

second. I selected this trouble spot as it related to a mathematical connection Melissa and Robin 

wanted students to make during the lesson: the ratio 1 to 3 is related to the fraction one-fourth, as 

similarly described in the “overlapping” model (Clark et al., 2003). 

The Trouble Spot: The Relationship between ȡ and ϳ  

While working with students on generalizing a formula to partition a line segment on the 

number line, Robin shifted students’ focus to the ratio the students found in the exploratory task, 

in what appears to be the teacher wanting students to make a connection between the ratio 1 to 3 

and fraction one-fourth. Table 1 provides transcripts of the discussion. In this episode, Robin 

made the connection that the ratio 1 to 3 is related to the fraction one-fourth. There is, however, 

no explicit reason given for the connection. Later in the lesson, Robin explicitly stated a general 

relationship that the ratio a to b is related to , but again, does not give any reasoning for why 

the two mathematical objects are similar. While students did not explicitly state any uncertainty 

during this moment in the lesson, there were several moments of silence (Lines 1.3, 1.12, and 

1.15). Later episodes in the lesson provide further evidence that some students were uncertain 

about the reason for the connection. For instance, Melissa later worked independently with two 

students on understanding the relationship between the ratio 1 to 3 and the fraction one-fourth 

during the work period. Also, when going over a problem with a ratio of 2 to 3, some students 

expressed confusion as to why the ratio is related to the fraction two-fifths.  

Table 1 

Transcripts of the First Enactment of the Lesson 

Line Speech transcript Gesture transcript 
1.1 Robin: Really quick, remember our ratio 1 to 3? That's what 

we got to. 

Underlines ratio 1:3 on the board 

1.2 Robin: Can we find, or can we think about a relationship 

between the ratio 1 to 3 

Writes 1:3 on the board 

1.3 Robin: and the fraction one-fourth? (4-second pause) Writes 1/4 on the board 
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1.4 Robin: Like is there another way we could write that where 

it could kind of relate to this ratio? 

Open palm held underneath 1:3 

1.5 Student 1: Can you... can you do one-third or you can do 

one-fourth or one dot dot four? 

 

1.6 Robin: Well I'm talking about - so these are two different 

things, right? 

Open palm held underneath 1:3 and 

1/4 moving back-and-forth 

1.7 Robin: We have 1 to 3 and then like one four, one-fourth, 

right? 

 

1.8 Student 1: You can do percentages, can't you?  

1.9 Robin: All I'm asking is that I want this to still stay as one-

fourth 

Open palm held underneath 1/4 

1.10 Robin: but I want to see if there's any ways we can write it   Open palm held underneath 1:3 

1.11 Robin: to where we have like a 1 and a 3 Both hands are open palms moving 

back-and-forth 

1.12 Robin: in this. (1-second pause) Open palm held underneath 1/4 

1.13 Robin: Like using plus, minus, multiplication? Both hands are open palms moving 

back-and-forth 

1.14 Robin: So, we have a 1 on top, Writes 1/ on the board 

1.15 Robin: what can I write on bottom using these numbers that 

can give you 4? (3-second pause) 

Open palm held underneath 1:3 and 

then sliding across to underneath 1/4 

1.16 Robin: Are you all confused by that?  

1.17 Multiple students: [crosstalk: Several students can be heard 

expressing confusion] 

 

1.18 Robin: Wait. Student 2 what'd you say?  

1.19 Student 2: 1 plus 3.  

1.20 Robin: Okay.  Writes 1+3 on the board 

1.21 Robin: Is that correct?  

1.22 Student 1: So, you're asking what can give you a 4?  

1.23 Robin: Yes. Okay, we're not going to go into this quite yet, 

but do you all see the relationship between this? 

Open palm shifting from 1/4 = 

1/(1+3) to 1: 3 

1.24 Robin: Okay. I know it’s kind of a confusing question, but 

we're going to need to know this in a minute. 

 

In the second enactment, Robin sought to create a shared context (Staples, 2007). I present 

the second enactment in Table 2 and then compare the two enactments. In this enactment, the 

connection is the same as the first enactment: the ratio 1 to 3 is related to the fraction one-fourth. 

There is, however, an explicit reason given by a student for the connection: “because, like one-

fourth, there’s like 4 parts to it.” The student recognized that the fraction one-fourth and the ratio 

1 to 3 were each a composition of four equal partitions. 

Table 2 

Transcripts of the Second Enactment of the Lesson 

Line Speech transcript Gesture transcript 
2.1 Robin: Okay and before we keep going from that, let's look at, let's 

look at our ratio that we found. 

Draws a circle around 1:3 

on the board 

2.2 Robin: We found a ratio of 1 to 3.  If we have a ratio that's 1 to 3, 1 

part 

Open palm on the left hand 

2.3 Robin: to 3 parts, okay. Open palm on the right 

hand 



32 
Proceedings of the 48th Annual Meeting of the Research Council on Mathematics Learning 2021 

2.4 Robin: does that make sense? What, what’s the total number of parts? Both open palms held up 

facing each other 

2.5 Multiple students: [crosstalk: Students can be heard giving answers of 

3, 4, and 8.] 

 

2.6 Robin: Okay, what? So, I'm getting a lot of different answers.  

2.7 Student 3: 4.  

2.8 Robin: 4. Why 4?  

2.9 Student 3: Because  

2.10 Student 4: 1 plus 3  

2.11 Student 3: well, we started off like finding the distance, but then if 

you have 3 parts and you have like 1 part, then you add them together. 

 

2.12 Robin: Yeah okay, that's exactly right.  So, um and then Student 4 you 

said…, what did you just say? 

 

2.13 Student 4: Oh, I just did 1 plus 3.  

2.14 Robin: Right, you're adding them.  So how could I rewrite, so if I have 

the fraction one-fourth, 

Writes 1/4 on the board 

2.15 Robin: which is what we originally started with and I kind of want to 

write it in terms of the ratio that we found, how could I rewrite it to 

where it would make sense? 

Writes = 1/ on the board 

2.16 Student 5: 1 dot dot, wait no.    

2.17 Robin: In fraction form.  

2.18 Student 5: Oh um…  

2.19 Robin: Kind of incorporating this ratio. Open palm held 

underneath 1:3 

2.20 Student 5: One-third? I don’t know.  

2.21 Robin: It has to, it needs to be equivalent to one fourth. You just -  

2.22 Student 5: Two-eights?  

2.23 Robin: Well, that is equivalent.  You just said it, what do we do to get 

to the 4?   

 

2.24 Student 6: We added.  

2.25 Robin: You added.    

2.26 Student 5: Oh add.  

2.27 Robin: Right, so can we write this as like um… so can we write this as 

1 over 1 plus 3. 

Writes 1+3 on the board 

2.28 Student 5: Yeah.  

2.29 Robin: Do you all see that?  Okay. We're just trying to find a 

relationship kind of between these, okay. 

 

2.30 Student 5: Oh, I get it because, like one-fourth, there's like 4 parts to it.  

2.31 Robin: Yeah, exactly, exactly.  So, we could like divide this into like 4 

parts. 

Open palm “chopping” the 

number line 

2.32 Robin: Okay, there would be that ratio of 1 to 3, but it would be, so if I 

were to draw the parts like there, there, there, and there. 

Writes vertical lines 

subdividing the number 

line into four equal parts 

2.33 Robin: There's 1, 2, 3, 4 parts.  Do you all see that?    

2.34 Student 7: Oh, I didn’t know what parts she was talking about.  

Comparison of First and Second Enactment 

In comparing the two enactments of the lesson, a small but seemingly significant difference 

occurred in how Robin began to build incremental common ground for the discussion of the 

connection. In the second enactment, Robin opens with a question that functioned as a 

commonality assessment (Horton, 2005). The question elicited several different answers from 
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students and revealed that students lacked common ground for the total number of parts (Lines 

2.4-2.6). Robin pursued the discrepancy in students’ answers (Line 2.6) and asked a student to 

justify why she thought there were four total parts (Line 2.8). The pursuit of these discrepancies 

for the total number of parts would be productive for students to make a connection between the 

ratio 1 to 3 and the fraction one-fourth (Staples, 2007).   

Similar to the first enactment of the lesson (Lines 1.2-1.20), Robin directed students to the 

connection that the ratio 1 to 3 is related to the fraction one-fourth in the second enactment 

(Lines 2.14-2.29). A student, however, did give a reason for the connection in the second 

enactment (Line 2.30). In response to the student’s reasoning, Robin identified the four equal 

parts on the number line by drawing lines “chopping” the line segments into four equal parts 

(Lines 2.31-2.32). Robin’s highlighting the four equal parts seemed to help focus some students’ 

attention to the total number of parts (Line 2.34). Robin’s gestures and highlighting are 

consistent with previous clinical research (e.g., Kelly et al., 2011; Peeters et al., 2015) and field 

research (Alibali et al., 2013, 2019). Robin changed the form of her gestures in the second 

enactment by pointing to the four parts to draw students’ attention to the total parts, perhaps 

perceiving a need to communicate the four total parts to develop the intended connection. 

Conclusion 

While other studies have documented how experienced teachers establish and maintain 

common ground (e.g., Alibali et al., 2019; Staples, 2007), I provided an example of a micro-

analysis of one student teacher’s beginning practice to build and maintain common ground. The 

data and analysis provided evidence that beginning teachers, given opportunities to work with 

students on a task, can start to coordinate their actions to build and maintain common ground in 

similar tasks in the future. In this case, the student teacher used a commonality assessment and 

her gestures to establish common ground for the meaning of the total number of parts, which 

supported students in interpreting the intended connection during the second enactment of the 

lesson. However, it is uncertain if the student teacher consciously attended to common ground in 

the moment or perhaps discussed how to respond to the trouble spots later with her partner or 

mentor. To address this uncertainty, future investigations of this practice with teachers should 

consider including post-lesson interviews or video-stimulated recall interviews with teachers. 

Further micro-analysis may also provide insight into how this everyday practice of building and 

maintaining common ground becomes specialized for teaching.  
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This paper explores how elementary preservice teachers (PSTs) understand the Standards for 

Mathematical Practice (SMPs) and identify them within elementary field placements. While 

observing mathematics lessons, the PSTs look for evidence of student engagement in and teacher 

facilitation of the practices. Understanding the SMPs and how to design and facilitate learning 

experiences that require students to engage in them is critical work for mathematics teachers. 

The patterns of learning revealed in the data from this exploratory mixed methods study can 

inform how mathematics teacher educators can support their PSTsô understanding of the SMPs 

as well as address common misconceptions.  

 

While the Common Core Standards (NGA Center & CCSSO, 2010) were introduced ten 

years ago, many school systems are still working toward robust implementation of both the 

content and mathematical practice standards. When working with preservice teachers (PSTs), we 

believe it is essential to bring emphasis to the processes required of proficient mathematicians 

through a deep dive into the Standards for Mathematical Practice (SMPs). In considering those 

experiences, it is important that we examine the extent to which PSTs are able to identify when 

their students are engaging in the mathematical practices as well as identify when and how 

teachers facilitate the mathematical practices. 

Purpose and Research Question 

It is important that mathematics teacher educators (MTEs) consider strategic ways in which 

they prepare PSTs to understand the mathematical practices because it impacts their future K-12 

students. Not only do future mathematics teachers need to have a strong grasp of content, they 

also need to know how to facilitate engagement of SMPs. Having a deep understanding of the 

SMPs is critical, so PSTs can plan and facilitate mathematics lessons that focus on the practices. 

By understanding how to use the SMPs to engage students in meaningful mathematics lessons, 

PSTs will be prepared to impact the development of K-12 students during field experiences and 

student teaching as well as when they are inservice teachers. 

Given the importance of the role of MTEs developing deep understanding of the 

mathematical practices among our PSTs, we regularly reflect upon how our PSTs understand the 

SMPs as they identify them during their field experience. One assignment that we have our PSTs 

complete in their placement classrooms is to identify the SMPs they observe as their cooperating 
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teacher conducts mathematics lessons. As we reviewed that assignment, we decided it would be 

helpful and informative to more formally examine the extent to which our PSTs are able to 

identify when students engage in and teachers facilitate opportunities for their students to engage 

in the mathematical practices. We focused our study by using the following research questions: 

(1) To what extent are PSTs able to identify the SMPs during a field experience? and (2) What 

misconceptions about the SMPs are prevalent among PSTs? 

Relevant Literature and Framework 

“The Standards for Mathematical Practice describe varieties of expertise that mathematics 

educators at all levels should seek to develop in their students.” (NGA Center & CCSSO, 

2010, p. 6). Thus, the teacher plays a crucial role in strategically planning and facilitating 

learning experiences that will allow students opportunities to engage in particular mathematical 

practices. As part of teacher preparation, it is important to develop the ability of PSTs to 

understand the SMPs as well as to understand how their students engage in these practices and 

develop the skills to facilitate that engagement.  

Students are learning about the concept of the SMPs in our university courses and then 

connecting it to experiences they have in the elementary classroom. Graybeal (2013) designed a 

similar study to ours, but PSTs used an iPad application to organize data. PSTs were encouraged 

to identify times in the lesson they were observing one of the eight mathematical practices. They 

spent one class period on each SMP and could record a small portion of the lesson, take pictures, 

or write a description to provide evidence of the SMPs. Our research differs from Graybeal’s 

study because they only looked at how students were engaging in the practices, whereas we 

looked at how teachers facilitated opportunities for the elementary students to engage in the 

SMPs in addition to how students engaged in the tasks. Prior researchers (Graybeal, 2013; Johns, 

2016; Wilkerson et al., 2018) have found teaching PSTs about the SMPs through real life 

examples, whether it was in field placements or using vignettes of student work and 

conversations in their methods class, helped PSTs better understand the SMPs. Our research 

differs from Wilkerson et al. (2018) because they used vignettes to help PSTs make sense of the 

SMPs whereas our students used video clips and observations in field placements. Johns (2016) 

implemented an activity where PSTs focused on constructing their own knowledge about place 

value while engaging in SMPs. After the lesson was over, they debriefed and PSTs shared 

evidence of different SMPs throughout the activity.  
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Because of our focus on having our PSTs apply and grow their understanding of the SMPs in 

a field placement setting, we are framing this study through Kolb’s (1984) cycle of experiential 

learning. PSTs build knowledge about the mathematical practices in their methods course 

through a variety of experiences including a deep dive into the SMPs and identifying the SMPs 

while watching videos of elementary math lessons. They have the opportunity to apply this 

knowledge during the concrete experience of their field placement, where they are immersed in 

an elementary classroom. While the PSTs observe math lessons, they are engaged in reflective 

observation, where they notice and connect what they are seeing the students and teacher do 

during math instruction to the mathematical practices. As they make sense of the mathematical 

practices, both during their field placement and during the debriefing process back in their 

university classroom, the PSTs refine their understanding of the mathematical practices and 

begin to solidify how they conceptualize them. This experience lays the foundation for continued 

application of the mathematical practices during active experimentation, when PSTs use their 

knowledge of the SMPs to develop problem-based lessons and facilitate the SMPs when teaching 

in their future field placements, including student teaching. 

Research Design 

When PSTs go into their elementary field placements, they observe at least two mathematics 

lessons. The PSTs are asked to describe and identify when they observe the elementary students 

engaging in the SMPs and when they observe the classroom teacher facilitating learning 

experiences that allow students to engage in the SMPs, which they record in a graphic organizer. 

The graphic organizer consists of a 9 x 3 table with the eight SMPs listed in the first column, the 

last two columns have the headings “student engagement” and “teacher facilitation,” and blank 

cells for PSTs to record their observations. PSTs are expected to include a picture and/or 

describe the portion of the lesson in words as to what happened that indicated that SMP. When 

the PSTs return from their field placement, we debrief and they talk about what they saw, 

including evidence of a given SMP. PSTs are then expected to reflect on their learning about the 

mathematical practices. For this study we will be focusing on the observations PSTs collected 

during their field placements.  

Participants  

Data was collected at two universities in an elementary math methods course. A total of 39 

participants were included in the study, 23 from University A and 16 from University B. 
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Students from University A were second-semester juniors in their first of two math methods 

courses and their field experience was conducted toward the end of the semester in K-2 

classrooms. Students from University B were first-semester seniors taking their only math 

methods course and their field experience was distributed in two-four week intervals throughout 

the semester; the assignment being analyzed for this proceeding took place in the third and fourth 

week of the semester in K-5 classrooms. 

Data Collection and Analysis 

Data from University A was collected during Fall 2019 and data from University B was 

collected during Spring 2020. Data consisted of the SMP graphic organizer completed by the 

PSTs during at least two observations of mathematics lessons in their field placements. Student 

engagement (SE) corresponds to how our PSTs indicated elementary students were engaging in 

the SMPs. Teacher facilitation (TF) corresponds to how PSTs’ supervising teachers facilitated 

learning experiences for the elementary students to engage in the SMPs. 

Two researchers, who were also instructors of the course, developed the rubric in Table 1 

through an open-coding process using the PSTs’ descriptions from their SMP graphic organizer 

to evaluate how PSTs identified the SMPs during their field placement observations. Table 1 also 

contains an exemplar for each level of the rubric rating for illustrative purposes using MP3 

Construct viable arguments and critiquing the reasoning of others. We used examples from the 

“teacher facilitation” cell in the graphic organizer to maintain consistency.  

Table 1 

Rubric for SMP Graphic Organizer 

 Proficient 

(4) 

Approaching 

(3) 

Developing 

(2) 

Beginning 

(1) 

Blank 

(0) 

Descriptor Observation 

reflects the 

mathematical 

practice 

Observation is 

related to the 

mathematical 

practice, but 

displays a 

common 

misconception 

about that practice 

Observation is 

related to the 

mathematical 

practice, but 

does not contain 

evidence of 

understanding 

the practice 

Observation is 

not related to the 

mathematical 

practice 

This portion of 

the graphic 

organizer was 

blank. 

Exemplar 

of MP3 TF 

The teacher 

asked, ñHow do 

you know your 

tower has more 

than 5 blocks?ò 

The teacher 

asked, ñDo you 

agree with that 

idea? 

Ask other 

students for 

feedback. 

The teacher is 

modeling 

decimals to 

students. 

No 

response/blank 

cell. 
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In order to ensure inter-rater reliability, the researchers analyzed the data together. If their 

ratings differed, the scores were discussed using the rubric descriptors, and for every instance 

they came to the same conclusion. Data from one university was analyzed first; then data from 

the second university was analyzed using the rubric in Table 1. Even though the assignment was 

implemented differently at each university, similar misconceptions and themes were found in 

both data sets. After scoring the responses in the graphic organizer using the rubric, frequencies 

were found to determine any trends in the data.  

Findings 

The researchers found frequencies of each of the 16 coded items. The columns are identified 

by the SMP and whether it was the “student engagement” (SE) cell or the “teacher facilitation” 

(TF) cell. For example, MP1 SE means we are coding the cell for MP1 and looking at the 

example of “student engagement.” Table 2 identifies the frequency to which each code (0, 1, 2, 

3, 4) was identified using the rubric in Table 1 for all 39 participants. Some students completed 

the student engagement but not teacher facilitation for a particular SMP or vice versa so we kept 

these separate. We are using Table 2 to identify trends in the data.  

Table 2 

Rubric Ratings by Mathematical Practice 

 
Rubric 

Rating 

MP1 

SE 

MP1 

TF 

MP2 

SE 

MP2 

TF 

MP3 

SE 

MP3 

TF 

MP4 

SE 

MP4 

TF 

MP5 

SE 

MP5 

TF 

MP6 

SE 

MP6 

TF 

MP7 

SE 

MP7 

TF 

MP8 

SE 

MP8 

TF 

0 5 6 11 15 10 11 9 9 5 6 11 10 15 18 13 18 

1 20 15 15 12 6 7 14 15 4 8 6 8 9 10 5 8 

2 3 3 4 5 2 1 2 1 6 3 3 2 4 3 6 4 

3 3 11 2 5 12 13 5 11 23 19 2 3 5 6 10 8 

4 8 4 7 2 9 7 9 3 1 3 17 16 6 2 5 1 

 

In looking at the overall data, our PSTs most frequently identified MP6 Attend to precision at 

a proficient level (score of 4: SE=17, TF=16). Many PSTs used examples of precise vocabulary 

and precise answers, including appropriate units. A misconception PSTs had about this SMP was 

that they identified precision in non-mathematical situations, like writing numerals in the proper 

format. What we found interesting was the dichotomy in scores for precision; just as many PSTs 

could not identify it (score of 0: SE=11, TF=10) or misidentified it (score of 1: SE=6, TF=8).  

Data also indicated that the following SMPs had a high number of misconceptions (score of 

3) compared to other practices: MP5 Use appropriate tools strategically (SE=23, TF=19); MP8 
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Look for and express regularity in repeated reasoning (SE=10, TF=8); and MP3 (SE=12, 

TF=13). Through teaching and delivering professional development, the researchers have 

observed that current students and inservice teachers frequently misidentify MP5. Although a 

manipulative or tool is being used in many of these cases, only one tool is being used and it is 

often selected by the teacher. For students to engage in MP5, the teacher should provide a variety 

of tools and the student chooses which one they want to use. An example of this misconception 

was noted in one PSTs’ work when they said, “Teacher gave cubes to each table” under TF.  

MP7 Look for and make use of structure and MP8 are so closely intertwined that they are 

commonly confused. We found that same misconception with our PSTs. For instance, a PST 

stated that SE in MP8 was when students could “Recognize the 6+1 is the same as 1+6,” but this 

idea of the Commutative Property reflects student engagement in MP7 instead. Another 

misconception we noted for MP8 was that some PSTs talked about building understanding 

through doing problems over and over, like timed tests, to memorize answers as opposed to 

generalizing. Another PST stated, “They understand the addition and subtraction patterns and 

have memorized the addition facts,” in SE, which reflects this focus on memorization. 

From Table 2, we also noticed that MP1 Make sense of problems and persevere in solving 

them had the highest rate of being misidentified (score of 1: SE=20, TF=15). This indicates that 

PSTs did not have an understanding of what activity would be classified as MP1. For instance, 

another PST stated that an example of SE was “Students are asked to color in the blocks on a 

paper to match how many blocks they have.” Similar to other SMPs, there were also a high 

number of misconceptions about how teachers facilitate MP1 (score of 3: TF=11. The PSTs 

misidentified instances when the teacher was engaging in MP1 by making sense of the problem 

and/or persevering in solving it rather than facilitating a learning experience that allowed the 

elementary students to engage in MP1. A PST illustrates this misconception when they said, 

“When student gets it wrong, teacher helps student walk through it without telling them the 

answer.” In this example, the classroom teacher is directing the student to persevere.  

Discussion and Conclusion 

The findings from this study indicate that developing a deep understanding of the SMPs takes 

time and that MTEs must be strategic in the way in which they prepare PSTs to understand and 

identify the mathematical practices. This is not surprising given that many of the misconceptions 

that arose in this study are similar to the misconceptions the researchers have observed when 
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working with inservice teachers. Even though there are challenges, the authentic experience of 

seeing the practices in action in elementary classrooms as part of a field placement did allow our 

PSTs to engage in reflective observation and solidify their conceptualization of the SMPs 

through the process of critical reflection (Kolb, 1984). We know that our PSTs will need 

continued opportunities to refine their understanding of how students engage in and teachers 

facilitate the SMPs both in our university courses and their future field placements. These 

opportunities might include generating examples and non-examples for each SMP, continuing to 

explore videos and/or vignettes of mathematics lessons through the lens of student engagement 

in and teacher facilitation of the SMPs after field experience, and being explicit about the SMP 

misconceptions. This will prepare them to do the work of mathematics teachers by developing 

the mathematical practices in their students (NGA Center & CCSSO, 2010). 

While found that our PSTs have a range of understanding an ability in terms of identifying 

the SMPs, we believe that the misconceptions we found among PSTs as we answered our second 

research question have greater implications for our work as MTEs. As such, this has made us 

aware of adjustments we need to make, as MTEs, in our university courses when introducing the 

SMPs. For instance, when discussing the SMPs in class prior to their placements, we will be 

more explicit with MP5. For MP5, we need PSTs to understand that students should be given a 

choice of tools and students are choosing what tool they want to use. Many PSTs identified MP5 

whenever students were given a manipulative. Additionally, we need to give more examples and 

non-examples of MP7 and MP8 when we introduce the SMPs, so students can see differences 

and clearly delineate between these two practices. 

Another common misconception we noticed across that SMPs was that our PSTs 

misinterpreted teacher facilitation as meaning the teacher engages in the mathematical practice 

itself. However, teacher facilitation of the SMPs is the way in which teachers create learning 

experiences that support students engaging in the SMPs. Therefore, we need to be more 

intentional with how we describe teacher facilitation in mathematics teaching and support our 

PSTs in knowing what facilitation of the mathematical practices looks like and sounds like. One 

aspect of this study that is beyond our control is the type of mathematics classroom in which our 

PSTs are placed for their field experience. If they are placed in a teacher-directed classroom, we 

might expect to see fewer instances of teachers facilitating the SMPs and greater instances of 

misinterpreting what teacher facilitation of the SMPs looks like. However, even in a student-
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centered mathematics classroom, there could be instances of inservice teachers misinterpreting 

teacher facilitation as engaging in the SMPs themselves, instead of creating opportunities for 

students to engage in the SMPs. As such, it is critical that MTEs explicitly address this 

misconception with their PSTs by providing examples and non-examples of teacher facilitation 

of the SMPs, including asking them to identify when they observe instances of this 

misconception. Experiences like this can support PSTs in developing a deeper understanding of 

the SMPs as well as prepare them to plan and facilitate mathematics lessons that effectively 

focus on the practices. 

Upon reflection, we also realized there were some logistical issues with the assignment that 

we need to address in the future. We did not require PSTs to provide videos as evidence for the 

implemented SMP due to privacy issues with the elementary students in the field placement, but 

Graybeal (2013) indicated that having the video clip helped determine if the SMP was evident in 

the lesson. In the next iteration of this assignment, PSTs will be required to elaborate more on 

their evidence in hopes that there will be fewer scores of 2 when we code data, which indicates 

we did not have enough detail to determine if the PSTs truly understood the practice. Likewise, if 

our PSTs do not observe a mathematical practice in the mathematics lesson or if they observe a 

misinterpretation of that practice as part of teacher facilitation, we will ask them to note that in 

their graphic organizer. For our next steps, we plan to implement this assignment again with the 

changes noted above and continue to collect data. 

In conclusion, we hope that these findings can inform other MTEs of potential challenges 

and opportunities as they work to develop a deep understanding of the Standards for 

Mathematical Practice in their PSTs. 
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This paper explores teaching moves enacted by an individual preservice teacher during a one-on 

one problem-solving interview and the rationales shared for making those teaching moves 

during a stimulated-recall interview. Relationships between the preservice teacherôs teaching 

moves and rationales revealed alignment and misalignment with the intended goal(s) of teaching 

moves established in the literature. Recommendations are made for teacher educators to support 

preservice teachersô development using an asset-based approach and highlights challenges of 

learning to teach responsively.  

 

The narrative of what it means to be teachers of mathematics is changing and continues to 

develop. Historically in mathematics education, teachers have been sole keepers of knowledge in 

the classroom—taking on the majority of the mathematical work while children listen and 

follow. In contrast, policy documents have emphasized teachers as facilitators who elicit and 

build on children’s mathematical thinking, (CMT) by listening closely in-the-moment and being 

responsive to their needs (Linewand et al., 2014). Responsive teaching is one type of teaching 

that embodies this narrative.  

Responsive Teaching 

Although there are many ways teachers can be responsive to children in the classroom, I 

adopt Robertson’s et al. (2016) conceptualization of responsive teaching and apply it to 

mathematics—one that requires teachers to attend to the details of CMT, maintain the focus on 

the underlying mathematical concepts, and employ opportunities to take up children’s ideas and 

follow them. This type of teaching positions children as capable and having assets on which 

teachers can build. Further, responsive teachers aim to better understand CMT through 

questioning their ideas—not evaluating them—and use what they learn to make instructional 

decisions in-the-moment (Jacobs & Empson, 2016). To capture the complex nature of 

questioning CMT, I use the term teaching moves. Teaching moves include questions, statements, 

or even actions (Jacobs & Empson, 2016). The ways in which teachers enact these instructional 

practices prompt children to respond in different ways, which can impact what children learn and 

what teachers understand about CMT.  

Eliciting and Building on Childrenôs Mathematical Thinking 
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Researchers use a wide range of terminology in their discussion of teaching moves that elicit 

and build on CMT (and those that do not). Thus, to synthesize these ideas, I formed categories of 

teaching moves—composed of various forms—based on the intended goal of each teaching 

move established in the literature. Although multiple categories of teaching moves exist, for the 

purpose of this paper, I focus on three more prevalent categories, (a) comprehending story 

problems (b) exploring details of children’s mathematical thinking, and (c) telling information to 

children. Further, since this study focused on one-on-one conversations between a teacher and a 

child, I did not include teaching moves geared toward whole class discussions such as revoicing 

(see e.g., Franke et al., 2015). First, comprehending story problems is a category of teaching 

moves that supports children in understanding the story situation and using stories as tools for 

sense-making (Ball, 1993, Jacobs & Empson, 2016). Second, exploring details of CMT is a 

category of teaching moves in which teachers focus on the mathematical details of what children 

say and do. For instance, teachers may invite children to share how they solved or press for 

reasoning about a detail to gain additional insight (Franke et al., 2015; Jacobs & Empson, 2016; 

Shaughnessy & Boerst, 2018). Third, telling information to children is a category of teaching 

moves that provides children with ideas teachers believe important for problem-solving such as 

demonstrating for children what to do or naming of terminology (Cengiz et al., 2011; Moyer & 

Milewicz, 2002; Sun & van Es, 2015). In sum, various teaching moves have the potential to be 

responsive, depending on how they are enacted.  

Developing Expertise in Responsive Teaching 

Research has shown a variety of ways practicing teachers and PSTs develop expertise in 

responsive teaching such as use of lesson sketch, simulations, and rehearsals (Grossman et al., 

2009; Shaughnessy & Boerst, 2018; Webel et el., 2018). Two commonly used ways to develop 

expertise in responsive teaching include videos of teaching and engagement in problem-solving 

interviews. Videos allow teachers to see and hear CMT and can be re-played as needed. 

Problem-solving interviews provide opportunities for teachers to engage directly with CMT and 

practice their questioning in a “low-risk” setting. In short, there is a growing research base about 

how teachers elicit and build on CMT as well as how this expertise develops.  

Current Study 

Much of what we know about the way teachers elicit and build on CMT come from 

practicing teachers. However, we know PSTs use similar categories of teaching moves with less 
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expertise as studies often compare their skillsets to those of practicing teachers or evaluate where 

support is needed (Jacobs et al., 2010; Sun & van Es, 2015; Webel et al., 2018).  Moreover, 

voices of PSTs—rationales underlying the teaching moves enacted—are often not foregrounded 

in this research. Similar to research that describes the importance of teachers being responsive to 

CMT, this study is built on the assumption that it is important for teacher educators to be 

responsive to the thinking of PSTs. Teacher educators cannot be responsive to PSTs’ thinking if 

this thinking is not elicited. The thinking of PSTs, or the underlying reasons for their decision-

making is referred to in this study as rationales. Therefore, this study was designed to add to the 

literature on responsive teaching including teaching moves PSTs make, rationales they provide 

for those teaching moves and to understand the relationship between their rationales and the 

teaching moves used when working with children. For the purposes of this paper, I focus on a 

research question from a larger study, what is the relationship between PSTsô teaching moves 

and their rationales for making them?  

Methods 

In the larger study, a mixed-methods design was used to better understand the teaching 

moves PSTs enacted and their rationales for making them in order to explore the relationships 

between teaching moves and rationales (Smithey, 2020). Further, this study aimed to gain a 

sense of how PSTs naturally engaged with children prior to explicit instruction in teaching 

mathematics. Thus, PSTs enrolled in the study had not yet taken a mathematics methods course. 

Upon recruitment, a total of 11 PSTs volunteered to be part of the study. For this paper, I 

focus on one PST, Julianne (a pseudonym), because she best represents the range of relationships 

between teaching moves and PSTs’ rationales found within the larger study. Julianne, a 

Caucasian female in her early twenties, was in the first semester of a two-year education 

licensure program located in the southeastern region of the United States. Prior to this semester, 

Julianne had taken one mathematics K-6 content course as well as an introduction to education 

course where she observed a few hours a week in the elementary classroom. 

Data Sources  

As part of the larger study, Julianne was recruited to participate in two interviews, a problem-

solving interview (PSI) and a stimulated-recall interview (SRI). A PSI is a one-on-one 

conversation between the PST and a second-grader around a series of mathematical story 

problems. The purpose of this PSI was to capture teaching moves enacted with children. The PSI 
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included story problems that were designed to include similar content (whole number), and 

strategic selection of contexts and problem structures. This interview lasted approximately 15 

minutes and was audio and video recorded. Second, the SRI provided space for PSTs to playback 

the video of their PSI shortly after it ended to retroactively recall the rationales for their teaching 

moves. After discussing the PST-selected teaching moves, teaching moves not yet discussed 

were revisited, and I asked about their rationales in similar ways. The SRI lasted approximately 

45 minutes and was audio and video recorded to be able to explore relationships during analysis. 

Data Analysis 

Data was analyzed in multiple phases. In Phases 1 and 2, PSIs and SRIs were explored 

separately and iteratively through qualitative and quantitative analyses with the goal of 

developing and applying coding schemes to capture teaching moves used and the rationales 

for making them. Development of coding schemes for the teaching moves began with a list 

of teaching moves from the literature and through constant-comparative analysis. It is 

important to note the teaching moves were coded as executed, not coded based on the 

PSTs’ intention nor the quality of enactment. In contrast, the coding scheme for the 

rationales were derived using grounded theory from the SRIs—to honor the voices of the 

PSTs. For the purpose of this paper, I focus on Phase 3 of data analysis where I connected 

qualitative and quantitative findings from Phase 1 and 2. The goal of Phase 3 was to 

explore relationships between teaching moves and rationales at the categorical level. To 

analyze the relationships, I created matrices to compare the categories, relative frequencies, 

and whether the rationales aligned or misaligned with the ideal goal of each teaching-move 

category—determined from my perspective, (informed by the literature), on the ideal goal 

of each teaching-move category. Note that each teaching-move category includes a variety 

of forms (e.g., inviting to share or pressing for reasoning), but for this analysis, as long as 

one of the forms of that teaching-move category aligned with the rationale category, that 

pair was considered aligned. In the following section, I use Julianne’s data as it is 

representative of the relationships found in the larger study (Smithey, 2020). 

Results 

Julianne enacted a total of 44 teaching moves across three categories, (a) exploring 

details of CMT, (b) comprehending story problems, and (c) telling information to children. 

Of the 44 teaching moves, Julianne discussed 31 of them during the SRI which linked to 40 
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rationales. Further, the number of rationales is greater than the number of teaching moves 

because sometimes Julianne had more than one rationale for enacting a teaching move. 

Although the larger study included multiple categories of rationales, Julianne’s rationales 

fell into three categories, (a) enhancing children’s understanding, (b) guiding children’s 

problem-solving, and (c) enhancing PSTs’ understanding. First, enhancing children’s 

understanding is a category of rationales in which Julianne wanted the child to better 

understand their strategy, the context, or a mathematical idea. Second, guiding children’s 

problem-solving is a category of rationales in which she prioritized the child getting to the 

answer over enhancing their understanding. Third, enhancing PSTs’ understanding is a 

category of rationales in which Julianne wanted to expand, confirm, or develop her own 

understanding of the child’s thinking. In sum, the rationales were explanations provided for 

making the teaching moves she did, not the teaching moves themselves. 

In comparing the ideal goal of the teaching move and Julianne’s own rationale for 

making a teaching move at the categorical level, sometimes those goals aligned and other 

times they did not. Although this would be expected for PSTs, upon closer examination 

these relationships provide specific insight into the capabilities Julianne has as well as the 

challenges she may face in learning to teach responsively. To best illustrate the complexity 

of these relationships, I focus here on one teaching-move category, exploring details of 

CMT.  Across Julianne’s PSI, 19 teaching moves explored details of CMT, and she shared 

25 rationales for making those teaching moves. Julianne showed evidence that her 

rationales for exploring details of CMT aligned with the intended goal of providing space 

for children to share the details of their strategies. Rationales that aligned with the teaching-

move category, focused on enhancing the child’s understanding as well as her own 

understanding, which collectively made up 72% of the total number of rationales for 

exploring details of CMT. In contrast, the rationale category of guiding children’s problem 

solving (prioritizing arriving at the answer) misaligned with the intended goal of providing 

space for children to share details of their strategies, which made up 28% of the total 

number of rationales Julianne provided for exploring details of CMT.  

More specifically, Julianne’s rationales for enacting teaching moves that explored the 

details of CMT aligned when she discussed the desire for the child to understand the details 

in their strategy, the story problem context, or the desire to develop her own personal 
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understanding of what the child was thinking. In contrast, some of Julianne’s rationales 

misaligned with the teaching-move category of exploring details of CMT as she indicated a 

priority in helping the child get to the answer yet used teaching moves intended to give 

space for the child to share their thinking independent from the teacher. Although we want 

to encourage PSTs to explore the details of CMT, the rationale for doing so should lie in 

learning more about the details of children’s strategies not in arriving at an answer. 

To further illustrate this alignment and misalignment, a story problem from Julianne’s 

PSI is used: Deja had 33 buttons. She put the buttons into 3 bags with the same number of 

buttons in each bag. How many buttons did she put in each bag?  To provide an overview 

of the child’s strategy, the child chose the hundreds chart and shared that she was going to 

take away 3 at a time until she had taken away 33. However, when she started counting, she 

counted up 3 at a time, starting at 33. When the child got to the end of the chart (100), she 

used base-ten blocks to continue counting up by threes. After Julianne encouraged a change 

of strategy, the child organized the cubes into 3 uneven groups and spent the rest of the time 

counting and recounting individual piles and the whole set.  

At the beginning of the button problem, Julianne invited the child to share her problem-

solving plans (exploring details of CMT) prior to solving. Julianne’s rationale for enacting this 

teaching move aligned because Julianne was trying to enhance her own understanding of how the 

child was thinking as seen in Table 1. 

Table 1 

Example of Alignment: Exploring Details of CMT and Enhancing PSTsô Understanding 

 
Problem-Solving Interview 

So what are you going to do there?  

(teaching-move category of exploring 

details of CMT) 

Stimulated-Recall Interview  

Because I really, I wanted to, again know the process she was going to do 

before she did it so if there was a chance that I need to stop her [and 

explain] this is what you're trying to do. Because if I went into it blank, I 

wouldn't know what she was doing to be able to help her. 

(rationale category of enhancing PSTsô understanding) 

 

As the interaction continued, the child began her strategy by counting up from 33, by 

threes, on the hundreds chart. After the child had counted past 50 on the hundreds chart, 

Julianne interrupted and explored the details of the child’s thinking by pressing for more 

information about her strategy. Julianne’s rationale for enacting this move was twofold (see 

Table 2). The first part aligned with providing space for the child to share reasoning about 

their strategy because Julianne was confused about what the child was doing. Thus, she 
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tried to enhance her own understanding of CMT. However, the second part of the 

Julianne’s rationale was misaligned with providing space for the child to reason about her 

strategy because the focus was trying to guide the child’s problem solving or, in Julianne’s 

words, “re-route her.”  

Table 2 

Alignment and Misalignment of Rationales: Exploring Details of CMT 

 
Problem-Solving Interview 

Explain to me what you are doing right now. 

(teaching-move category of exploring details of 

CMT) 

 

Stimulated-Recall Interview 

This is one of those places where I stopped her because I did not 

understand how she was going all the way into the 50s. And I 

wanted to see where she was 

(rationale category of enhancing PSTsô understanding) 

 

and if there was any way I could re-route her and to, I guess one 

of the correct ways of doing it. 

(rationale category of guiding childrenôs problem solving) 

These examples from this story problem, showcased how Julianne used teaching moves to 

explore the details of the child’s mathematical thinking and how at times her rationales 

aligned (and misaligned) with providing space for the child to share their thinking. 

Discussion 

The goal for examining teaching moves and rationales together was to understand the 

relationships that may exist between them and what that means in the development of PSTs as 

responsive teachers in mathematics. In this case, we were able to better understand the rationales 

Julianne had that aligned with the goals of the teaching moves she enacted but also see instances 

when Julianne used teaching moves that did not align with her rationale. Furthermore, we were 

able to see instances Julianne used a teaching move that was responsive to CMT but from her 

perspective, the goal was for the child to arrive at an answer—proving more important than the 

child understanding. By asking PSTs to reflect on their practice in more specific ways, teacher 

educators have opportunities to listen and learn from PSTs—identifying the assets they bring to 

the classroom as well as the challenges they may face in learning how to teach in responsively.  

I argue teacher educators should refine the ways they ask PSTs to reflect on their practice. 

Typically, after teaching experiences, we ask PSTs to reflect on how they felt, what they learned, 

or what they might have done differently (see e.g., Webel et al., 2018). Although reflecting in 

these ways is well documented as an effective learning tool, PSTs’ recalling their in-the-moment 

decision making, as they did in the SRIs, would be an additional tool for learning (Smithey, 
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2020). Further, asking PSTs to reflect on why they used particular teaching moves and noting 

how children respond can help PSTs better align their teaching moves with their goals.  

As the field continues to encourage being responsive to the needs of children (Robertson et 

al., 2016), I argue we should extend the notion of responsive teaching to teacher education and 

aim to draw on the assets of those we teach. Further, teacher educators can elevate the 

perspectives of PSTs to inform our instructional decisions. Finally, I urge the field to consider 

valuing voices of those we teach and the power in using their perspectives in our research. 
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The purpose of this study was to investigate fourth-grade studentsô sensemaking of a word 

problem. Sensemaking occurs when students connect their understanding of a situation with 

existing knowledge. We investigated studentsô sensemaking about a word problem by comparing 

studentsô strategy use. Inductive analysis was used to find themes about student sensemaking. 

Students exhibited one of three levels of sensemaking. Some problem-solving strategies, as a 

result of studentsô sensemaking, led to a greater frequency of correct results.  

 

Standards represent each states’ expectations for what content should be taught. Many states 

have adopted some form of the Common Core State Standards for Mathematics (CCSSM; 

CCSSI, 2010). The CCSSM established real-life problem solving as something students should 

be engaged in throughout their K-12 education (CCSSI, 2010, p. 6, 7, 84). Furthermore, teachers 

should promote students’ mathematical proficiency through providing opportunities for students 

to “make sense of problems and persevere in solving them” (CCSSI, 2010, p. 6). This study 

investigates fourth-grade students’ sensemaking about a multi-step situational word problem, 

providing the mathematics education community with evidence about students’ sensemaking in 

the Common Core Era. 

Theoretical Frameworks: Problem-solving and Sensemaking 

This study is framed by notions of problem solving and sensemaking about situational word 

problems. Broadly speaking, problem solving “is what you do when you don’t know what to do” 

(Sowder, 1985, p. 141). Verschaffel et al. (2000) describes a six-stage model of problem solving 

that includes (a) reading the problem, (b) creating a representation of the situation, (c) 

constructing a mathematical representation of the situation, (d) arriving at a result from 

employing a procedure on the representation, (e) interpreting the result in light of the situational 

representation [see (b)], and finally, (f) reporting the solution within the problem’s context. In 

consideration of students’ sensemaking, we utilize a framework for problems such that the word 

problems are (a) open, (b) developmentally complex, and (c) realistic tasks for an individual 

(Verschaffel et al., 1999). Open tasks can be solved using multiple developmentally appropriate 
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strategies. Word problems therefore are mathematical tasks presented as text, which contain real-

life situational background information (Verschaffel et al., 2000). We define strategy as the 

mathematical pathway an individual enacts while problem solving, which includes both 

representations and mathematical procedures (Goldin, 2002).  

Sensemaking about Word Problems 

Sensemaking is when students develop an understanding of a situation or context by 

connecting it with existing knowledge (NCTM, 2009, p. 4). The way students make sense of 

problems can vary quite a bit due to cognitive, social, and environmental factors (Cifarelli & Cai, 

2005). During problem solving, students need to make sense of the word problem by observing 

connections between the situation being presented and the mathematical representations and 

operations necessary for a solution (Verschaffel et al., 1999; Verschaffel et al., 2009). The word 

problem increases in sensemaking difficulty when the situation necessitates more than one 

operation, and the use of the result from the previous operation must be interpreted and used in 

the context of a different operation (Quintero, 1983). Sensemaking is essential for successful 

problem solving (Pape, 2004; Verschaffel et al., 2000). Development of sensemaking habits help 

students develop autonomy, relying on their own reasoning and resources to be more persistent 

while problem solving (Meuller et al., 2011; Yackel & Cobb, 1996), and ultimately foster 

productive dispositions as mathematically proficient problem solvers.  

Sensemaking occurs at many steps in the problem-solving process (Verschaffel et al., 2009) 

and some have focused on students’ work between the situation and mathematical stages as a 

way to explore sensemaking. For instance, Palm’s (2008) qualitative study examining fifth-grade 

students’ work indicated that students’ engagement with realistic word problems increased the 

likelihood their problem solving ended with a correct solution to a problem. Similarly, Yee and 

Bostic (2014) also conducted a qualitative study examining secondary students’ word problem 

solving and drew a conclusion that more successful problem solvers were flexible with their 

mathematical representations often using non-symbolic representations, compared to others who 

employed symbolic tools. Taken collectively, the literature provides ideas about students’ 

problem solving but few take a critical look at students’ work to explore their mathematical 

sensemaking of word problems. Hence, this study aims to fill a needed gap within the problem-

solving literature. 

Method 
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The Fair Task 

This study stems from a broader grant-funded project aiming to develop problem-solving 

tests that align with the Common Core State Standards for Mathematics in grades 3-6. Each 

Problem-Solving Measure (PSM) is composed of 15 items addressing grade-level content. 

Validity evidence has been gathered for each test and led to a robust and valid score 

interpretation and use arguments (e.g., Bostic et al., 2019). In this study, we investigated 

students’ sensemaking of one purposefully selected word problem from the PSM for grade 4. 

The Fair Task states, “Josephine sold tickets to the fair. She collected a total of $1,302 from the 

tickets she sold. $630 came from the adult ticket sales. Each adult ticket costs $18. Each child 

ticket costs $14. How many child tickets did she sell?” It incorporates multi-step thinking and 

addresses Operations and Algebraic Thinking (OA) standards. Specifically, students are expected 

to make sense of a mathematical difference and the number of groups within it. This task was 

selected because (a) it is of moderate psychometric difficulty for average-performing students, 

(b) multiple developmentally-appropriate strategies have been used to solve it, and (c) it is 

connected to standards that are linked with fostering algebraic understanding (Smith, 2014).  

Through the PSM validation process, the Fair Task was reviewed by mathematicians, 

mathematics educators, and mathematics teachers. Drawing upon the knowledge of these experts 

three key observations (KO) to successfully solve the Fair Task were generated. These KOs are 

tied to sensemaking of various parts within the word problem. (KO1) The difference between 

$1,302 and $630 is the dollar amount brought in by selling child tickets. This value is $672. 

(KO2) Each child’s ticket is $14. There is some number of groups of 14 that represent the 

number of child tickets sold. (KO3) The number of groups of 14 within the unit of 672 indicates 

the number of child tickets sold. We drew upon these KOs to explore two research questions. 

(RQ1) How do students draw upon sensemaking while solving the Fair Task? (RQ2) What 

mathematical strategies did students use while problem solving and how were those strategies 

related to students’ successful problem solving on the Fair Task? 

Participants and Setting 

In total, 280 fourth-grade participants were included in the study. They came from a rural and 

a suburban school district located in a Midwest state that adopted the CCSSM. The PSM4 was 

administered near the end of the academic year in paper-and-pencil format. PSM4 administration 

followed the same practice as usual. Students solved problems individually, in a quiet classroom 
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setting monitored by the researchers and a classroom teacher. They did not use calculators, had 

up to 120 minutes for test administration, and were encouraged to write, draw, and represent 

their ideas on the testing paper. Any students named in this proceeding are pseudonyms.  

Data Collection and Data Analysis 

Participants solved the Fair Task and expressed their strategy use and result from problem 

solving in writing. The written work on the Fair Task was reviewed by a team of three 

researchers. This largely qualitative study of students’ written mathematical work on the Fair 

Task used inductive analysis (Hatch, 2002) to generate themes about students’ sensemaking. The 

coding process of analysis had multiple steps. Three researchers read the solutions of all 280 

students. The frame for the analysis was evidence of student mathematical sensemaking of the 

problem related to the three key observations for the Fair Task. Researchers looked for 

sensemaking as evidenced by student work conveying understanding of the connection between 

the Fair Task context and students’ mathematical strategies for solving the problem at hand. The 

researchers identified salient domains, clusters of strategy types, and gave them a code. Each 

researcher took a specific domain and reread all of the students’ solutions to decide if the 

domains were supported by the data. Discrepancies were shared with the research team and 

discussed for consensus. This completed analysis for RQ1. The authors created written 

paragraphs and graphic maps to describe each domain. The completed domains were analyzed, 

within and across, for patterns involving students’ solution strategies for the Fair Task. When 

patterns among student strategies were found, further analysis on the participants work 

exhibiting those patterns was conducted to determine the level of success among the strategies 

used. This completed the analysis for RQ2. Data excerpts to support the patterns are shared. 

Findings 

RQ1: Sensemaking of the Fair Task 

Inductive analysis revealed three qualitatively different levels of student sensemaking. These 

domains were labelled as: robust evidence of sensemaking, partial evidence of sensemaking, and 

no evidence of sensemaking. Robust evidence of sensemaking about the Fair Task indicated 

attention to all three key observations necessary to solve the problem. Seventy-nine of the 280 

students (28%) in our sample provided evidence that they made sense of the key observations 

and enacted 14 unique mathematical strategies to derive an answer. While strategies varied 

among the 79 students, 50 students arrived at the correct answer. The remaining 29 students had 
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evidence of their sensemaking about all three KOs, but didn’t arrive at the solution due to a 

minor arithmetic error. This suggests that generally speaking, students who made sense of the 

difference, the number of groups, and the number of groups within the appropriate difference, 

arrived at the appropriate solution. Figure 1 offers four samples of student work evidencing 

robust sensemaking through different strategies. 

Figure 1 

Student Samples for Robust and Partial Sensemaking 

 
Note.  Student work samples of different strategies for robust and partial sensemaking of the Key 

Observations needed to solve the Fair Task.  

 

Some students in our sample demonstrated partial evidence of sensemaking about the Fair 

Task through their attention to mathematical work for KO1, KO2, or both KO1 and KO2, but did 

not provide evidence for KO3. One hundred fifteen of the 280 students (41%) provided evidence 

that they made sense of either the difference, the number of groups of 14, or both. However, 

these students were unable to demonstrate evidence of their understanding for KO3. This is 
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depicted in the examples in Figure 1. The students in this domain exhibited eight mathematically 

different strategies.  

Students’ work lacking evidence for any of the three key observations were classified as no 

evidence of sensemaking. Eighty-six of the 280 students (31%) provided no evidence that they 

had made sense of any of the three key observations. Broadly speaking, students in this domain 

either enacted strategies that did not lead to a correct solution of the Fair Task or gave no 

evidence of how they arrived at their solution. 

RQ2: Strategic Choices for Finding the Difference (KO1) 

As students made sense of KO1 involving the difference between 1302 and 630, they had 

representational and operational choices to make. Three strategies were identified: (a) Standard 

Algorithm, which involves a symbolic representation to perform vertical subtraction (b) Adding 

Up, which involves a symbolic representation of adding up from 630 to arrive at 1302; and (c) 

Number Line, which involves a pictorial representation of adding up from 630 to arrive at 1302 

using a number line. Standard Algorithm was the most prevalent strategy among students as it 

was used by 159 of 174 students who attended to KO1. Adding Up from 630, a much less 

prevalent strategy than Standard Algorithm, was used by 14 of 174 students who attended to 

KO1. Number Line was only used by one student.  

RQ2: Strategic Choices for Finding the Number of Groups (KO2) 

Students used a variety of methods to find the number of groups of 14 to represent the 

number of child tickets sold (KO2). Students used both number-based and digit-based 

operational procedures. The number-based operational procedures that students used included 

the following: repeated subtraction and multiplication, multiplication using the standard 

multiplication algorithm or the box method, partial quotients using a traditional or nontraditional 

setup, and compensation. The digit-based operational procedures that students used included the 

standard algorithm for division alone or in combination with repeated subtraction, addition, 

and/or multiplication. Table 1 shows the number of participants in each group including the 

number of participants who found the correct number of groups of 14 that go into 672. The 

evidence indicates that students who engaged in the Fair Task were most successful with finding 

the number of groups when using multiplication. Students were equally likely to be successful 

when using the standard algorithm and partial quotients to do traditional division and students 

were only successful 11% of the time when using repeating addition and subtraction.  



58 
Proceedings of the 48th Annual Meeting of the Research Council on Mathematics Learning 2021 

Table 1  

Student Strategies Attending to Key Observation 2 

Strategy Number Based 

or Digit Based 

Total 

Participants 

Number of participants 

with correct computation 

Percentage 

Repeated addition 

and subtraction 

Number Based 9 1 11.11% 

Multiplication  Number Based 10 10 100% 

Standard Division 

Algorithm  

Digit Based 39 26 66.67% 

Partial quotients Number Based 20 12 60% 

 

Summary of Findings 

The number of different strategic choices made by students demonstrated the open nature of 

the Fair Task. The various strategies illuminate differences in students’ sensemaking and 

response to multi-step word problems. Out of the 174 students who gave evidence for making 

sense of KO1, 159 of them used the standard algorithm for subtraction, including all of the 

students who showed robust evidence of sensemaking. In contrast, KO2 opens up the pathway 

for division to be used as the students need to find the number of groups of 14 that go into 672. 

However, the students in this study used all four operations to make sense of and solve KO2. 

Students’ strategies when sensemaking about KO2 showed that many understood they were able 

to use properties of operations and the relationships between the operations in their quest to find 

the number of groups. However, there were differences in the rates of success among the 

strategies as only two-thirds of the students using algorithmic processes for division proceeded to 

get the correct answer while 100% of the students using multiplication methods to arrive at the 

number of groups of 14 arrived at the correct answer. Lastly, only 28% of all students were able 

to demonstrate sensemaking about the connection between KO1 and KO2 and this greatly 

restricted the number of students who could successfully solve the problem. 

Connections to Literature 

The findings here support and extend the current sensemaking literature by examining 

students’ sensemaking in each key observation of a multi-step word problem. Students struggled 

the most with KO3 (difference and number of groups of 14), which required them to makes 

sense how the two mathematical ideas connected. This supports Quintero’s (1983) assertion 

about word problems difficulty and Pape’s (2004) conclusion that sensemaking is essential for 

successful problem solving. This study also extends the problem-solving literature (e.g., Palm, 
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2008; Yee & Bostic, 2014) by providing evidence about which strategies chosen by fourth-grade 

students tended to yield the most success. Overall, sensemaking and procedural proficiency were 

revealed to be co-dependent attributes for fourth-graders successful problem solving.  
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Standardized testing has expanded to incorporate more non-symbolic representations. On the 

surface the inclusion of more concrete visual models appears to be a productive step in 

providing a more meaningful assessment of studentsô understanding. However, this study uses a 

lens of process/product (Sfard, 1991) to highlight a complication that emerges as students 

attempt to interpret a model presenting a narrow view of a mathematical concept, specifically a 

quotient view of fractions. 

 

Introduction  

Representations play an important role in the learning and understanding of mathematics 

(NCTM, 2000). In the domain of rational numbers, visual models support students in developing 

an understanding of fractions that goes beyond the procedural approach traditionally emphasized 

where students apply rules and treat the constituent symbolic parts simply as whole numbers 

(Moss & Case, 1999). In an effort to elevate the significance of models, the Common Core State 

Standards for Mathematics (CCSSM; CCSSI, 2010) specifically denotes the use of visual 

fraction models as an essential component to understanding fractional operations. In response, 

many states’ standardized tests have begun to expand their assessments of students’ 

understanding of fractions to include non-symbolic representations. While the inclusion of 

different representations allows for students to illustrate a broader understanding of fractions as 

well as elevates their importance, it also brings up other possible complications. Models, like all 

representations, do not have a uniform interpretation (Gould, 2013; Thompson & Lambdin, 

1994). Their meaning depends on what students see and how they interpret the various parts. 

This is particularly problematic with fractions as their meaning readily shifts depending on what 

students define as the whole. The goal of this study was to investigate how students navigate the 

tension that arises when they are assessed on their understanding of a model that can be 

construed in a variety of ways, but the standardized nature of the test means there is an implied 

correct interpretation.  

Theoretical Perspective 

Mathematical concepts can be understood in two different, but related ways: operationally, as 

processes, and structurally, as objects (Sfard, 1991). For example, even the fundamental notion 

mailto:olivia.mcquirt@furman.edu
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of whole numbers can be conceptualized in both ways. Initially, children see numbers as the 

process of counting real world objects. Over time, as students gain experience with counting, this 

process becomes reified and they begin to see numbers as an object, specifically the result of this 

counting process, capturing the cardinality of the set of objects.   

The ability to interpret representations as embodying both a process and product is a key 

mathematical understanding (NCTM, 2000). However, all too often students are introduced to 

powerful mathematical representations without developing an understanding of the underlying 

mathematical processes they embody (Sfard & Linchevski, 1994). Consequently, they view and 

act on the representation as an object itself, detached from any operational underpinnings, a 

conceptualization referred to by Sfard and Linchevski as a pseudostructural. Moreover, with 

such a superficial understanding of the representation, any subsequent processes performed on it 

seem completely arbitrary, devoid of meaning.  

Sfard and Linchevski (1994) explored this conceptualization within the context of algebraic 

symbols. However, with the use of models expanding in mathematics education, a similar 

phenomenon seems to have manifested itself with more concrete representations. For example, 

we see a pseudostructural conceptualization characterizing the resulting understanding reported 

by Webel et al. (2016), where teachers provide students an algorithmic method to apply to a 

fraction multiplication model. Given the problem 
 
, students are instructed to shade 

 
 of the 

rectangle vertically and  of the rectangle horizontally (Figure 1). The intersection provides 

students the answer 
 
 using a part-whole view of the model, but without having them engage in 

the process of finding  of 
 
, which is fundamental to understanding fraction multiplication. 

Alternatively, students applying an operational conceptualization will first draw 
 
 of the whole 

and then find  of this part. The process of  operating on 
 
 results in two parts and must be 

interpreted relative to the original whole to arrive at the answer 
 
.  

Figure 1 

Pseudostructural Conceptualization of a Fraction Model  
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Methods 

To explore how students interpret fraction models that appear on standardized tests, we 

provided a shortened version of the district administered end of unit test to 17 fifth grade 

students. The test consisted of six multiple choice questions from the previous year, each of 

which included a model, either in the question or answer, and involved a contextual situation of 

equal sharing or fraction multiplication. In an attempt to ensure a diversity of thinking, students 

were selected from three different classes. In addition, a range of students, based on the teachers’ 

perception of aptitude, were invited to participate in the study. After completing the test, we 

conducted semi-structured interviews with each student. During the interview students were 

asked to explain how they initially solved the question, followed by a series of questions 

specifically targeting their understanding of the model. These interviews were video-taped and 

relevant portions were transcribed. After making detailed notes of all six questions, we focused 

our analysis on one equal sharing problem (Figure 2) in which students demonstrated a wide 

range of interpretations of the model presented. The differences that emerged seemed to be 

rooted in whether the students saw or anticipated the model as 1) representing an object void of 

any process, 2) a model of the equal sharing process, or 3) both a process and the resulting 

product. Taking this lens, we analyzed the data once again, and found these three categories 

served to account for the differences in students’ understanding. 

Figure 2  

Equal Sharing Problem 

 

Problem Analysis 

The above problem targets a quotient understanding of rational numbers using the context of 

equal sharing. The correct answer is A: If 5 gallons of tea are poured into 12 jars equally, how 

many gallons of tea will be in each jar. Like all mathematical concepts, rational numbers can be 
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interpreted both as a process, the division of whole numbers, and a product, the fractional result 

of division. The above contextual problems target this dual understanding, although the model 

provided only seems to capture the product. Contrast such a model to what students often do 

when answering such a question. Attempting to capture the process of equal sharing, they draw 

each of the 5 gallons of tea and then distribute them equally into 12 jars (Empson & Levi, 2011). 

A common strategy is to divide each of the 5 gallons into 12 equal parts, then allocate 1 part 

from each gallon to one of the 12 jars.   

Figure 3  

Representation Capturing the Equal Sharing Process 

 

Each part represents a twelfth of a gallon and the five together result in five twelfths of a gallon 

that is poured into each jar. By drawing the five gallons and partitioning them up, students 

capture the process of equal sharing before consolidating the amount together in a resulting 

product representation. It is the act of physically distributing the original 5 gallons and 

connecting this action to the final amount in each jar that supports students seeing 
 
 both as the 

process of dividing the 5 gallons into 12 jars and the resulting product of 
 
 of a gallon.  

As noted, the model that students are to interpret on the test does not include this process, but 

only the resulting amount. Students must provide this process themselves and correctly connect it 

to the model. Such a connection is particularly challenging as students must realize that the 

whole long rectangle does not represent the 12 jars or even one of the 12 jars, but rather one of 

the initial gallons of tea of which 
 
 is poured into one of the jars.  

Results 

Of the 17 students, 11 did not attempt to conceptualize the equal sharing process within the 

model. The other six students all engaged in this process but differed in how they connected such 

understanding to the model provided. Three of these six explained that none of the answer 

choices connected to the model with two of these students emphatically dismissing all answers 

because they failed to capture this process. The final three attempted to interpret the model as 
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both a process and the resulting product. While successful, they arrived at two different, yet 

logical interpretations of the model, and consequently different answer choices. 

Category 1: Pseudostructural Understanding 

The 11 students who interpreted the model without connecting it to the associated equal 

sharing process all conveyed a pseudostructural understanding. Seven students described the 

model simply as representing 5 out of 12, a part-whole conceptualization, and interpreted the 

pieces as whole numbers. For example, Jalen explained that the “overall rectangle represents 5 of 

something. It is 5 twelfths of anything.” Such a characterization highlights that Jalen viewed the 

model no differently than the decontextualized symbolic representation of 
 
. Similarly, Steven 

summarized his understanding of the model as, “It doesn't really tell you what to do on this one. 

It’s just saying there are 5 shaded in pieces out of 12...5 over 12.” When pressed to explain why 

he chose c), he stated that all of the choices could have been correct, but explained that for c) the 

5 shaded pieces represented the 5 beakers and the total 12 blocks were the 12 liters of water. 

Such a construal was the case for all of the students in this category. Regardless of their answer, 

they saw the model as a decontextualized 
 
 and associated the 5 shaded squares and the total 12 

squares as representing whatever quantities corresponded to 5 and 12 in the problem they chose.  

This latter interpretation embodies the understanding demonstrated by the other four students 

in this category. Rather than seeing the model as a fraction, they simply matched the whole 

number quantities provided in their selected answer choice with the corresponding whole number 

of blocks. With such a view of the model, students just resorted to guessing as any of the four 

choices could be matched as such. Regardless, in both cases, the model provided no meaningful 

connection to the process.  

Category 2: Rejection of Answers-Model Fails to Represent Process 

Three students fell in a second category. They focused on an equal sharing process but were 

unable to connect their reasoning to the model provided. One student, after explaining his 

understanding, stated that he was unable to see how equal sharing would be represented in the 

model and thus resorted to guessing. The other two concluded that no answer choice was correct. 

When asked why, these two students explained that the given model did not capture the equal 

sharing process that the problems indicated and then offered illustrations of what the model 

should look like for different answer choices.  
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To demonstrate their thinking, we turn to Carlota, who not only provided her own alternative 

representations for answer choice a) and b), but also articulated her interpretation of the given 

model. She began by explaining, “I didn’t think that any of these were correct answers, because 

in my mind the fraction model represented subtraction.” She further clarified her reasoning by 

giving an example of a problem that she believed the model represented. “If you gave 5 pieces of 

candy to 12 friends, how many pieces would you have left?” She then illustrated the solution of 

this problem with the model, by drawing the 12 blocks and then shading 5 of them, explaining 

that this represents the 5 she gave away.   

We see Carlota’s explanation as significant because her interpretation of the given model 

demonstrates how she expected the model to illustrate a process associated with solving the 

problem. Her rationale indicates that she views models not simply as a static representation used 

to present the final answer but as a tool to solve problems. Anticipating that the model would 

capture a solution process, she appeared to associate it with subtraction, as the only process 

visible to her was takeaway. While Carlota did not see 
 
 in the model, it was not because she 

lacked a quotient understanding of fractions. She simply did not connect such an interpretation to 

the model given, as it was removed from the action presented by the context. In her justification 

for why none of the answer choices were correct, she provided detailed solutions to both a) and 

b), including her own process-oriented representations similar to Figure 3.  

These three students, as illustrated by Carlota, expected a correct model to represent the 

equal sharing process outlined by each of the possible answer choices. She possessed a strong 

understanding of the context, could draw a model that captured the equal sharing process, and 

was able to use it to arrive at a correct solution. Her reasoning was simply not rewarded because 

the model provided did not embody this action.  

Category 3: Dual Simultaneous Interpretations-Process and Product 

The last three students, Eric, Bojan, and Josh, initially interpreted the model similar to 

students in the first category but were able to build on this initial understanding. They all 

imposed the process of equal sharing on the model and then reconceptualized it as the product of 

this process. As we illustrate below, because the static nature of the model required them to 

abstractly enact this process on the model, they arrived at two different, yet logical solutions. 

Eric believed the correct answer was a). When asked to clarify his thinking, he first explained 

that each square represented one of the 12 individual jars and that the 5 shaded rectangles 



66 
Proceedings of the 48th Annual Meeting of the Research Council on Mathematics Learning 2021 

represented the gallons of tea. He then began to model the distribution process, envisioning the 5 

gallons of tea being poured into the 12 jars. To do so, he created his own diagram of a single 

gallon and divided it into 12 parts. He then imagined pouring 
 
 of each of the 5 gallons into this 

newly drawn gallon, explaining, “When we take 5 and put it into the 12 we are splitting the 5 

each into 12. Each whole is getting split into 12. That first jar is going to get 
 
 of one of the 

gallons then we can multiply it by 5 to get the 5 gallons. Which when we multiply we get 
 
.” 

With this explanation, he clarifies that the 12 rectangles no longer represent the individual jars 

but rather now collectively represent a single gallon. 

Eric’s solution is notable because he was able to impose his understanding of the distribution 

process on the given model. In addition, he was able to reconceptualize the model and construe it 

as the product of this process. To see both the process and product in the model required him to 

redefine the meaning of the different components in the model and interpret them simultaneously 

in two different ways. To facilitate this transition, he created his own intermediate diagram of the 

distribution process but then reconnected it to the original model.  

Bojan and Josh engaged in similar reasoning as Eric but applied their solution method to 

answer choice b) and c) respectively, resulting in valid, but completely different interpretations 

of the model. Although Bojan and Josh selected different problems, their interpretations of the 

model were similar. To illustrate this thinking, we look at Josh’s explanation of c). He began by 

explaining how he imagined the 12 squares representing the 12 L of water that needed to be split 

evenly among the 5 jars, represented by the 5 squares that were shaded. He then started to 

abstractly pour a liter of water into each of the 5 jars until he stopped at the remaining 2 liters. At 

this point he had filled each of the 5 beakers with 2 liters of water, a total of 10. He then started 

to separate the final 2 liters of water into groups of 5, giving 1/5 from each liter to the 5 beakers. 

In the end, the 12 liters had been equally distributed and each of the beakers was full of 2 and 2/5 

liters of water, a result he fully clarified.  

For Josh (and similarly Bojan), he imagined ς inside each of those shaded beakers, the 

same way that Eric saw the model as one jar with 
 
 of a gallon. The ability of both students to 

impose their own thinking on the model demonstrated a rich understanding of a process 

interpretation of the model as well as one connected to the numerical result.    

Conclusion 
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While standardized tests have begun to broaden the representations used to assess students' 

understanding of mathematical concepts, this study demonstrates that test makers must consider 

more comprehensively the type of thinking students will engage in when presented such 

representations. While on the surface the inclusion of more concrete visual models appears to be 

a productive characteristic, these results highlight the pitfalls of creating a standardized test with 

the expectation of a single interpretation of an abstract representation. The design of this problem 

seemed to encourage a pseudostructural conceptualization of the representation as the model 

provided was divorced from the equal sharing process. Such a narrow representation proved 

highly problematic, resulting in confusing the vast majority of students we interviewed with very 

few of them able to demonstrate their understanding.  

Models, like all representations, do not have a singular meaning. Without proper 

consideration, students can and will express rich understandings very different from the answer 

deemed correct. One lens when designing test questions to consider is the degree to which the 

model allows students to conceptualize both the product and process. Students who can see both 

a process and a product within a representation possess a deeper understanding of the underlying 

mathematical concepts. However, such rich understanding can be marginalized due to high 

stakes testing.  
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The purpose of this mixed-methods study was to investigate the impact of daily problem-solving 

discussions on fifth-grade studentsô use of heuristics and metacognitive awareness when 

problem-solving. The sample consisted of 74 students taught by five distinct teachers from three 

schools in a Mid-Atlantic State. The results suggest that problem-solving discussions impact 

studentsô use of heuristics in class, but that these outcomes may not transfer to test-taking 

environments. No significant impact on studentsô metacognitive awareness was found. These 

results add to the literature base on how to teach problem-solving in elementary schools.  

 

Background 

Teaching through problem-solving has been shown to increase students’ creativity, 

motivation, transfer, mathematical understandings, and the prevalence of positive mathematical 

dispositions (Boaler, 2002). Consequently, problem-solving has been identified as a key outcome 

of mathematics courses and as a conduit for deeper learning (Cai, 2003; Lester, 2013). Past 

studies have highlighted factors undergirding problem-solving such as metacognition (Flavell, 

1979), large repertoires of heuristics that can be flexibly applied to problems (Jitendra et al., 

2015; Koichu et al., 2007), content knowledge, and beliefs (e.g., Schoenfeld, 2013). However, 

little is known about how best to utilize these relationships in teaching (Lester & Cai, 2016).  

Promisingly, the positive impacts of problem-solving may be enhanced when students are 

given opportunities to problem-solve in discourse-rich environments. Such environments allow 

students to explore their thinking as they justify their claims (Cai, 2003; Lester & Cai, 2016) and 

reflect on and regulate their thinking (e.g., Lester, 2013; Rosenzweig et al., 2011). Evidencing 

this, Koichu et al. (2007) used think-alouds to conclude that teaching heuristics through 

discourse significantly increased mathematics achievement for students. Thus, coupling heuristic 

instruction with metacognitive supports may be crucial in developing problem-solving 

instruction that allows students to flexibly apply their learning (Jitendra et al., 2015). 

Despite the links between discourse and mathematics proficiency (e.g., Goos et al., 2002; 

Koichu et al., 2007), few studies have considered whether daily problem-solving discussions 

impact students’ problem-solving proficiency, metacognitive awareness, and heuristics use when 

problem-solving. Thus, the purpose of this study was to explore the impacts of integrating 
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problem-solving and daily discussion-based routines. Framing this, the research questions were, 

when compared to a control group, does the daily use of problem-solving discussions:  

1. impact fifth-grade students’ problem-solving proficiency? 

2. impact fifth-grade students’ use of heuristics when problem-solving? 

3. increase students’ metacognitive awareness? 

Theoretical Framework 

The theoretical lens of Social Constructivism (Fox, 2001) framed the current study. 

Specifically, the study was designed and interpreted at the intersection of assumptions that 

knowledge is a product of social interactions and that knowledge is constructed through the lens 

of individual experiences (Fox, 2001). Consequently, the intervention described below included 

components that allowed for students to pose and interpret problems in light of personal 

experiences, but then to also share personal thinking and consider the thinking of others through 

classroom discussion. This framing is supported by the aforementioned research that suggest that 

discourse is a crucial component in problem-solving, in developing students’ abilities to 

problem-solve, and in increasing students’ effective use of heuristics (e.g., Goos et al., 2002). 

Description of Intervention 

As noted above, using problem-solving in discourse rich environments that support 

metacognition has shown promise (e.g., Koichu et al., 2007; Rosenzweig et al., 2011). Coupling 

this with the social constructivist framing, the intervention consisted of “problem-solving 

discussions,” which were operationalized as five to fifteen minute full-class discussions around a 

problem. These discussions generally consisted of a two to four-day sequence in which the 

students first activated and considered their own experiences and curiosities by posing 

mathematical questions around a given prompt. Students then unpacked a number-less version of 

the problem, shared different heuristics that they believed could be used to solve the problem that 

included quantities, and finally solved the problem and discussed different solutions.  

Exemplifying this process, the following basic problem was used to introduce the process to 

students prior to using more rigorous problems: First, a prompt of “Hunter is riding his bike this 

weekend” allowed students to pose mathematical problems (e.g., “how fast did Hunter ride?”). 

This was then followed up on the second day by “Hunter is riding his bike in a challenge this 

weekend. How far did he ride on Sunday?” In considering this prompt, students asked questions 

and then evaluated these questions as a group based on their likely usefulness in solving the 
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problem (e.g., “what is the total distance that Hunter rode?” was deemed to be potentially useful 

while “was Hunter wearing a helmet?” was deemed to be likely irrelevant to the given problem). 

Finally, on the third and fourth days, students solved the problem: “Hunter is riding his bike this 

weekend. He wants to ride 5 miles in under 48 hours. On Saturday, he rode σ  miles. How far 

did he ride on Sunday?” Within this, teachers were expected to do the following: 

1. Choose problems that allowed for productive struggle 

2. Provide opportunities for students to engage in sense-making 

3. Allow students to develop and share their own models of thinking and heuristics 

4. Focus conversations on both problem-solving heuristics and content knowledge 

5. Record student thinking in a visible location and ask questions to encourage reflection 

and metacognitive awareness 

In these ways, the problem discussions were designed to elicit student thinking and facilitate 

discourse and reflection around various aspects of problem-solving and the use of heuristics. 

Methodology 

Participants 

The participants consisted of 74 students that were drawn from six, fifth grade math classes. 

These classes were taught by five distinct teachers from three different elementary schools 

within a single school district in the Mid-Atlantic region. The students were divided into a 

control group that included 38 students (17 male and 21 female) that were taught by two distinct 

teachers, and an intervention group containing 36 students (18 male and 18 female) who were 

taught by three distinct teachers. Two students from each group were missing pre-test data and 

were excluded from the quantitative analysis. Prior to the intervention, all three teachers from the 

intervention group and one from the control group reported that their schools—starting as early 

as second grade—required that students use a single heuristic (model drawing) on all classroom 

assignments and assessments. Contrastingly, the teacher of the other two control-group classes, 

who taught 31 of the 38 students in the control group, stated that they teach problem-solving by 

using “different strategies, manipulatives, and drawing to [help students] understand a problem.”  

Data Collection 

In this mixed-methods study, participating students were pre- and post-tested on problem-

solving and metacognitive awareness. The problem-solving measure was used to address the first 

two research questions related to problem-solving proficiency and heuristic use. The measure 
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was developed using nine questions drawn from released state tests that had been well validated 

by the state. However, five questions on the post-test had to be modified due to potential 

compromises and were validated by mathematics and assessment experts to ensure consistency 

in structure, content, and rigor. Meanwhile, the Jr. MAI (Sperling et al., 2002) was used, with 

permission, to address the third research question related to metacognitive awareness. 

 After pre-testing, intervention teachers attended 12 hours of training on problem-solving, 

metacognitive questioning, and on facilitating meaningful classroom discourse before facilitating 

problem-solving discussions for nine weeks. However, it is worth noting that actual 

implementation ranged from 23 days to 36 days for the three intervention teachers out of the 45 

possible school days. Finally, semi-structured interviews lasting approximately 30-minutes were 

conducted with the intervention teachers—Lenny, Olivia, and Bailey. These interviews were 

designed to understand the fidelity of implementation and to collect qualitative data on the 

teachers’ perspectives in order to better understand and interpret the quantitative findings. 

Data Analysis 

Problem-solving pre- and post-tests items were scored as correct or incorrect and assigned a 

value of “1” or “0,” respectively. Points were then summed to provide a score out of nine. An 

ANCOVA was used to analyze group differences while controlling for pre-test scores. Student 

problem-solving measures were then coded based on the heuristic that the student used to solve 

each problem. This process resulted in the development of seventeen unique codes, the four most 

common of which are shown below in Table 1. For example, Figure 1 shows a student work 

sample that was coded as “used a model drawing and then applied a common algorithm.” 

Figure 1  

A Student Work Sample Showing a Model Drawing 

 

Jr. MAI pre- and post-tests were scored by converting Likert scale responses of “Never”, 

“Sometimes”, and “Always” to a 1, 2, or 3, respectively. These scores were then averaged across 

the 12 questions and analyzed using an ANCOVA to control for pre-test scores. Finally, initial 

codes were generated from transcribed teacher interviews using line-by-line coding, which were 

then grouped to form themes (Charmaz, 2014). For example, the quote “towards the end of the 
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study, some of them came up with some really good strategies” was coded as “student strategies 

improved over the study,” and supported the development of the theme “many students 

generated more problem-solving strategies over the course of the study.”  

Results 

Qualitative Analyses 

Qualitative analyses of interview data through the lens of social constructivism resulted in 

seven themes. Selected quotes evidencing the two themes relevant here are included below. 

Theme 1: Students Began to Generate More Problem-solving Heuristics and Ask More 

Questions. Evidencing the first theme, Olivia, noted that “at the very beginning [of the 

study]…[the students] were trying to draw all these elaborate flags that didn’t match the 

problems,” but that “towards the end of the study, some of them came up with some really good 

strategies…[like] drawing pictures to model their thinking instead of doing model drawing 

necessarily.” Moreover, Bailey said that, as a result of the discussions, students “started to 

internalize and question, do I need that information? Do I need to know more information? 

…What piece did I need to know? What piece didn’t I need to know?” Finally, Lenny said that 

“when a student engages their prior knowledge and experience to develop a strategy, they 

construct a closer connection to the problem,” thereby positing that classroom discussions 

allowed students to draw on their personal experiences to construct heuristics. 

Theme 2: Students Began to Value Their Thinking and the Thinking of Their Peers. 

Evidencing the second theme, Olivia noted that “because of the different answers [the students 

were] more likely to share their answers and explain their thinking.” Similarly, Bailey said that, 

by the end of the intervention, students were “more open to hearing from a different 

perspective… [and] looking at the question in a different way” at the end of the study. Finally, 

Lenny reflected that students transitioned from a “how am I supposed to solve [the problem]?” 

mentality to a focus on understanding. Lenny attributed this change to the focus on student 

discourse which allowed students to take more “initiative…[and] led to… [heuristics being] 

developed by students… [rather than by] teachers.” 

Overall, all three teachers believed that students’ use of heuristics, abilities to ask meaningful 

questions, and consideration of their own thinking as well as the thinking of their peers, 

improved as a result of the study. Consequently, the teachers believed that the diversity of 

thought caused students to utilize diverse heuristics when problem-solving. 
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Quantitative Analyses 

Analysis of the problem-solving pre- and post-tests showed that both groups improved on the 

post-test with the mean scores increasing from ὼӶ υȢωρς ὛὈ  Ȣσςχ to ὼӶ φȢτχς ὛὈ

 Ȣςψφ for the control group, and from ὼӶ φȢσςτ ὛὈ  Ȣσφσ to ὼӶ φȢωχρ ὛὈ  Ȣσπσ for 

the intervention group. However, group differences were not significant when controlling for 

pre-test scores, as analyzed using an ANCOVA (F = .719, df = 1, p > .05). Similarly, analysis of 

student work showed minimal changes in the heuristic’s students used when problem-solving. As 

evidenced by the four most prevalent codes shown in Table 1, students tended to rely on learned 

algorithms. The only notable difference between groups was that the intervention group also 

relied heavily on model drawings—a difference that is likely attributable to prior instruction. 

Table 1 

Frequencies of the Five Most Prevalent Heuristics used when Problem-solving 

 Pre-test 

(Control) 

Pre-test 

(Intervention) 

Post-test 

(Control) 

Post-Test 

(Intervention) 

 N %a N %a N %a N %a 
Used a common algorithm to 

add, subtract, multiply, or divide. 
196 60.5 126 41.2 201 62.0 138 45.1 

Used a common algorithm to add 

or subtract fractions. 
48 14.8 56 18.3 49 15.1 43 14.1 

Used a common algorithm to 

find a common denominator for 

fractions. 

27 8.3 17 5.6 12 3.7 14 4.6 

Used a model drawing and then 

applied a common algorithm. 
0 0 67 21.9 0 0 63 20.6 

         
aPercentage calculations are frequencies compared to the total heuristics for each measure.  

Finally, pre- and post-test scores for the Jr. MAI remained stable for both groups when 

controlling for pre-test scores using an ANCOVA (F = 2.085, df = 1, p >.05), with mean scores 

decreasing from ὼӶ ςȢςχφ ὛὈ  Ȣςρσ to ὼӶ ςȢςρσ ὛὈ  Ȣςτχ for the control group, and 

increasing from ὼӶ ςȢςφψ ὛὈ  Ȣςπς to ὼӶ ςȢςψφ ὛὈ  Ȣςυπ for the intervention group.  

Discussion 

The contrasting results of this study are difficult to interpret. Teacher interviews suggest that 

the discourse-rich environment caused students to use a wider array of heuristics when problem-

solving, began to reflect on their own thinking, and considered the thinking of their peers. These 

findings align with prior research (e.g., Jitendra et al., 2015; Koichu et al., 2007) that suggests 
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that metacognition and the use of heuristics are intrinsically linked when problem-solving, and 

that student-centered discourse is a promising avenue for developing these skills. Contradicting 

this, quantitative analyses do not suggest that meaningful growth occurred in terms of students’ 

abilities to problem-solve, use diverse heuristics, or maintain an awareness of their thinking. 

One potential explanation is that the intervention did impact students’ abilities to utilize 

heuristics when problem-solving—as noted by the teachers—but that these learnings did not 

transfer to the post-test. Given that, prior to the intervention, most intervention students had been 

required to use model drawing on all tests and were penalized when they did not, it is possible 

that the formal testing environment of the post-test activated these experiences and may have 

inhibited students’ willingness to utilize learned heuristics. Supporting this possibility, Olivia 

reflected that many of her students had a hard time initially transitioning away from only using 

model drawing, and suggested that the intervention should start “in second grade.” Thus, given 

that identities become less malleable over time (e.g., Langer-Osuna & Esmonde, 2017), a longer 

intervention may have been necessary to overcome this barrier. 

Research also suggests that reflection is vital in the development of more robust cognitive 

and metacognitive processes (e.g., Zelazo et al., 2018). Considering this in terms of problem-

solving, context situated reflection of heuristic use supports students in building conceptual 

frameworks that may allow for better understanding and transfer of problem-solving skills (e.g., 

Hamilton et al., 2007). Although informal reflection was a component of the discussion designs, 

it is likely that maximizing the impact of any problem-solving intervention requires 

incorporating structured reflection (e.g., through writing or reflection tools) into the intervention. 

Overall, using daily, discourse-based problem-solving routines demonstrate potential in 

supporting students in heuristic literacy and metacognition. Despite this, more research is needed 

to analyze the impact that discourse-based problem-solving has on students’ use of heuristics and 

metacognitive awareness when problem-solving. Specifically, future researchers should consider 

iterations of the intervention that increase the duration of the intervention that include a more 

explicit focus on transfer and on reflection.  
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Based on observations made during the project proposal week of an undergraduate research 

program in applied mathematics, this paper explores the role of faculty in guiding students in 

developing a research question and an accompanying model. Results suggest that students 

should be pushed to become experts in the background subject matter, while mentors take the 

lead mathematically. Key skills for developing a research question include: defining the 

temporal/spatial focus, exploring broader impacts of the work, and anticipating possible 

mathematical results to help define the question. Constant dialogue on both sides about the 

scientific mechanisms informing mathematical choices was critical to model development. 

 

Mathematics as it is taught in secondary and post-secondary classes differs greatly from 

mathematics as it is practiced by professionals and from the needs of partner disciplines (Ganter 

& Barker, 2004; Ganter & Haver, 2011; Lewis & Powell, 2017). Reports from industry and 

professional societies repeatedly emphasize the importance of professional skills in 

communication, collaboration, problem solving, mathematical modeling, and creativity on top of 

a solid foundation of procedural skills and coherent mathematical understandings (Bliss et. al., 

2016; Ganter & Barker, 2004; Ganter & Haver, 2011). These soft-skills do not come free with 

fluency in mathematical skills or sophisticated mathematical understandings.  

The skill of interest to this report is described by Bliss et. al. (2016) as "Distilling a large ill-

defined problem into a tractable question," (p. 72) which I will call "developing a research 

question." Smith et al. (1997) found that graduate students in mathematical biology struggle with 

developing research questions that are both biologically interesting and mathematically tractable. 

Mathematical modeling education research has little to say on the development of this skill. 

Research in this area typically focuses on students working pre-chosen tasks (Bliss et. al., 2006; 

Gravemijer, 1994; Lesh & Doerr, 2003). Sometimes these tasks are quite open, and students go 

through cycles of model development; however, in assigning a task to students, there are 

constraints placed on students as part of intentionally guiding the students' conceptual 

development (ibid). It has been argued in the past that these constraints limit students' 

experiences in developing their own research questions (Castillo-Garsow, 2014; Castillo-Garsow 

& Castillo-Chavez, 2015).  
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Camacho et al. (2003) found that choosing one's own project and research question creates 

situations in which students take the lead in researching topics far outside a mentors' area of 

expertise, essentially reducing the mentor to a role of consultant rather than leader. These unique 

situations create opportunities to identify key components of soft-skills such as developing a 

research question. For example, in studying student-chosen projects, Smith et al. (1997) found 

that students' and mentors' goals for modeling, as well as their beliefs about the value and 

purposes of modeling, impacted their ability to develop a research question that resulted in a 

scientifically relevant and tractable model.  

This study follows a single group of undergraduate students in the process of developing a 

topic of their own interest into a research question and accompanying mathematical model. 

Because the students in this project worked in close and constant collaboration with both 

graduate and undergraduate mentors, we can see how mathematicians at different stages of their 

career view the task of developing a research question and accompanying model.  

The purpose of this study is two-fold: (a) to begin the process of identifying specific goals, 

skills, and values that are critical to developing a research question and model in applied 

mathematics and (b) to provide guidance to mentors of student-led applied mathematics projects 

by identifying effective, transferable interventions.  

Methods 

This study occurred in the fifth week of an eight-week summer REU in mathematical 

biology. Prior to this study, the students had taken a three-and-a-half-week course consisting of 

lecture, computer lab work, and textbook exercises in dynamical systems. Following this course 

work, students self-recruited into groups of three to five, and chose a topic of interest. During the 

fifth week, students made daily presentations on their topic to a panel of faculty and graduate 

mentors who provided feedback. In the final three weeks of the program, students completed the 

analysis of their model and wrote a technical report on their project. Four groups of students 

chose to participate in the study, and these preliminary results are from the analysis of the first 

group. This group was chosen to analyze first because the project was judged by participating 

mentors to be the closest to a typical project in the REU, and because the success of the project 

could be determined by publication in a prominent journal. The citation for the publication is 

omitted to protect the privacy of the participants. 
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The group of students in this study was formed of five undergraduate students who chose to 

construct a model for controlling a disease that is transmitted between multiple species of 

animals. They made six presentations during proposal week to a panel of faculty and graduate 

mentors. One presentation (five) was cut short by the mentors who did not believe that their 

feedback was necessary at that time. Thirteen of these mentors made comments on the students’ 

work. Each proposal conference was video and audio recorded, and the audio recordings were 

transcribed. These transcripts, along with the technical report written at the end of the summer 

program were taken as data for analysis. The published version of the students’ project, which 

resulted from unrecorded collaboration after the program ended, was omitted from this study. 

Transcripts were initially open-coded and then axially coded (Strauss & Corbin, 1990) using 

qualitative data analysis software. This coding provided a visualization for how the content of 

the presentations and the priorities of the participants changed as the project developed. 

However, this initial coding did not give a sense of the impact that mentors’ comments had in 

influencing the direction of the project, so a second analysis was performed. In this second 

analysis, mentor comments were isolated from the transcript, and each mentor comment was 

coded individually for its content, and then in the context of the transcript and the final paper 

with an eye to how the content of that comment was revisited in students’ future work. Over the 

six daily presentations, 269 comments from 13 mentors were isolated, coded, and analyzed.  

Results 

Initial Coding  

The initial coding provided a sense of the structure of the presentations. Figure 1 shows the 

top level codes for the topics being discussed by both students and mentors during the 

presentation. Topics generally fell into nine broad categories in this analysis, only six of which 

are discussed in this paper due to space limitations. The first code was related to discussions of 

the students’ research question, such as asking students to present their research question or 

discussing what makes a good research question (ex: “I'm curious what a good measure is for 

whether [your intervention is] effective”). Background codes referred to discussion of the 

biological background situation in general, but not specific to developing the model, such as the 

initial literature review into the behavior of the disease or the life cycle of an animal (ex: “But if 

you put those same surface proteins on the bacteria that they do produce an immune reaction to, 

then they'll build up antibodies with that initial infection, they will start fighting off the 
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bacteria”). Focus codes referred to codes that were about defining the problem space to a specific 

geographic, demographic, spatial, or temporal region (ex: “the other data sets were from Indiana, 

which is a very different ecological setup than in this area”). Mechanism codes referred to key 

processes that informed model development, such as identifying stages that individuals pass 

through, choosing variables, describing the precise way that individuals counted by those 

variables interacted, and proposing specific intervention strategies (ex: “Yes, so every time they 

are moving onto the next stage… that's when they can pick up the bacteria”). Model codes 

referred to the development of the equations and corresponding flow diagrams to be used (ex: “it 

should be NI + NS. Infected and susceptible”). Lastly, model analysis codes referred to mentors 

anticipating the results that students might get (ex: “Regardless of whether these treatments are 

able to reduce R0 below one, they will reduce the endemic prevalence somewhat”). 

Figure 1 

Presence or Absence of a Code in the Transcript Over Time

 
Note: Timeline of topics discussed by both mentors and students during the students’ six presentations. 

Color indicates the topic is being discussed at that time, while white indicates the topic is not being 

discussed at that time. Black vertical lines separate individual presentations. 

 

Three topics were prominently discussed in every session (Figure 1): the research question 

(dark green), the background biology (brown), and the specific mechanisms that would inform 

model construction (light green). Two days of presentations were devoted to these topics before 

the research question is defined and model construction began, and during model construction, 

these topics – particularly mechanisms – continued to be revisited.  

Much of the early discussion in defining a research question focused around defining the 

scope of the project (Figure 1, dark blue). Prior to presentation three, a prominent feature of the 

discussion was placing specific bounds on the scale of the study: the geographic location to be 

modeled, the specific populations to be studied, and time scale to be used. These questions 

provided direct guidance in refining the research question. 



81 
Proceedings of the 48th Annual Meeting of the Research Council on Mathematics Learning 2021 

An unanticipated result is that the discussion of model analysis (Figure 1, bright orange) 

preceded the development of the model (cyan), and even the final determination of the research 

question itself (dark green). Discussion of possible methods of analysis created a common 

language that the mentors used to discuss the research question in an unfamiliar topic. By 

discussing potential mathematical results, the mentors helped guide the research question to 

being one that could be defined mathematically in the form of a model.  

The Second Coding 

The second coding isolated mentor comments and related the impact of each mentor’s 

comment on the project to the coded content of the comment. Mentor comments were coded by 

content, and then the impact of each mentor’s comment was coded in three ways (Duration, 

Fidelity, and Direction). Duration was coded as Final, Local, or None depending on if students 

responded to comments in the final paper, in presentations, or not at all. Fidelity was coded as 

Pivotal, Direct, or Tangential, depending on whether students based a key aspect of the project 

on the mentor comment, followed feedback faithfully, or made changes that were merely related 

to the feedback. Direction coded the novelty of the mentor’s suggestion itself as Identical, 

Similar, Distinct, or Novel, depending on if the comment was something students had discussed 

before in presentation, related to an idea students had discussed in presentation, different from 

something students had discussed in presentation, or a new idea that students had never 

discussed in presentation. Coding was based only on the evidence available within the 

presentations and the final paper. It is possible that students may have thought of an idea coded 

Novel and never presented it, but these possibilities were not a factor in coding. 

For examples of codes, the mentor comment “One box can cover how big an area?” was 

given a code of Similar because students were planning a spatial model, Direct because students 

followed up and found an answer, and Local because students did not include space as a factor in 

their final model. The mentor comment “How much are these boxes?” was coded as Novel 

because students had not proposed to look at cost prior to this question, and Final because cost-

optimization played a role in the final paper. This comment was coded as Direct rather than 

Pivotal because students initially only answered the question. The following day the comment 

“you could impose a cost structure on it” was coded as Pivotal, as students changed their 

research question after this second comment, but Similar because students had already discussed 

cost. For an example of Tangential, several mentors that students investigate the feeding 
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behavior of the animal, and students did look for papers on this topic, but never incorporated the 

idea into their project. Comments that most reliably impacted the final paper were questions that 

asked students to define the research question or the focus of the project more precisely, and 

comments that assisted students with model development or choosing a methodology. Comments 

that received no response from students were ones that requested changes to the direction of the 

research question or the focus, or asked students to make or explain decisions about model 

development. 

A look at the relationship between Direction and Fidelity showed a similar story. Comments 

that helped students do what they were already going to do (Identical or Similar Direction) were 

followed faithfully (Direct Fidelity) 78% and 67% of the time (Identical and Similar 

respectively). Comments that asked students to make drastic changes (Distinct Direction) were 

unpredictable, resulting in 43% Pivotal Fidelity, 33% Direct Fidelity, and 25% Tangential 

Fidelity (after rounding). Comments that introduced new ideas (Novel Direction) were either 

comments that resulted in radical changes to the project (33% Pivotal Fidelity), or were followed 

only in a perfunctory way (50% Tangential Fidelity).  

Mentor comments that students took as pivotal advice were mentors explaining mechanisms, 

asking students to explain mechanisms, or mentor suggestions for methodology or analysis. 

Comments students followed directly were asking students to explain model development 

decisions, or suggesting specific changes to the model. Students compromised (Tangential 

Fidelity) on requests to do additional background research or find more data. 

Comments that developed ideas students haven’t thought of (Novel or Distinct Direction) 

included suggesting or providing additional background, asking students to explain mechanisms, 

or suggesting the impact of their research (how it might affect others). Comments that drove 

students deeper into existing directions (Similar or Identical Direction) included asking students 

to decide on a model or analysis, or asking students about the impact of their research. 

Discussion 

In broad strokes, mentors focused on asking questions about the background situation (which 

they were less knowledgeable of), and provided direct suggestions about the mathematical 

construction of the model (which was within their area of expertise). The timeline of the 

presentations also followed a trajectory of background to research question to model. However, a 

deeper dive into the data identified skills and mentor actions that were not immediately obvious.  
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The data analysis identified specific ways in which mentors guided students in the 

development of a research question: (a) mentors pressed students to precisely define the spatial, 

temporal, and demographic focus of the study, (b) mentors suggested possible impacts or 

implications for the research, and (c) mentors anticipated possible mathematical analysis or 

results, which helped guide the choice of research question.  

Students appreciated feeling in control of their project. Mentor comments that helped 

students to do what they already planned to do were followed much more faithfully. Mentor 

comments that requested large changes to the project were sometimes of pivotal importance, but 

more frequently were ignored, or partially followed. The difference was the background 

expertise of students and the mathematical expertise of mentors. Students were reluctant to make 

decisions about the mathematical construction of the model, but welcomed the opportunity to 

direct their own project and be experts in the background subject matter. 

Lastly, the discussion of mechanisms played a key role in every aspect of research question 

and model development. Mentors directly pressed students for deeper scientific understanding 

until it could be made mathematically precise. This skill of examining how the background 

process worked, and choosing an expression to describe that process was critical for model 

development and was exercised consistently throughout all the presentations.  

A limitation of the study is that of the 269 comments made by mentors, slightly over half 

(141 comments) received no response from students. Part of the reason for lack of response of 

students is the large number of mentors who frequently talked over each other or interrupted, 

giving the students insufficient time to respond. It is impossible to determine how students might 

have responded to these comments that were interrupted. 
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A second algebra-based college-level statistics course was redesigned with the desire to help 

students make connections between class content and its use in the real-world. Attitude changes 

were investigated using the SATS-36. Positive changes were found for Cognitive Competence, 

Affect, and Difficulty while no significant changes were found for Interest or Value.  

 

Background and Literature Review 

 Investigating students’ attitudes toward statistics has been the focus in many research studies. 

Gal and Ginsberg (1994) were one of the first to emphasize the need to assess student attitudes as 

they are likely linked to the students’ perceived difficulty of the subject. Huynh et al. (2014) 

discovered that students found mathematics and statistics unenjoyable to learn so they wanted to 

figure out what could be done to improve students’ attitudes towards the subject.  

 Many instructors have implemented real-world applications and even real data as 

recommended by the GAISE College Report (American Statistical Association, 2016) hoping to 

improve students’ connections and their attitudes toward the content. The efforts at helping 

students make these connections has been done in a variety of ways. Some researchers have tried 

to make this link by having students collect their own data (Carnell, 2008, Huynh et al., 2014). 

Other statistics instructors have incorporated activities into their course with the hopes of 

improving students’ attitudes towards statistics. Paul and Cunnington (2016) investigated 

implementing the GAISE recommendations in an introductory statistics course. However, these 

studies often found either no significant change in attitudes or negative changes.  

There have been many studies that have investigated how students’ attitudes toward statistics 

change in an introductory college course; however, what about the students who must take a 

second course housed in a statistics department? Are we able to improve their attitudes by 

designing the course with their future applications in mind? Knowing that students’ attitudes 

tend to become more negative during the first course (Schau & Emmi̇oğlu, 2012) and that they 

will likely carry these attitudes into the second statistics course, it was of interest to design the 

second course in a way that would allow students to see the applicability of what they were 

learning to their futures. More specifically, the course was to be designed in a way that students 
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could see how statistical techniques could be used with real data and could also learn how to 

communicate this information in a non-technical manner. It was then of interest to measure the 

attitude changes over this second statistics course to see if there were more favorable outcomes. 

Second Statistics Course Topics  

 This second algebra-based college-level statistics course is aimed at a business major 

audience, which does not include mathematics or statistics majors. Topics included in this course 

include two-sample means, ANOVA, non-parametric tests, two proportions, chi-square test for 

independence, regression techniques (simple linear, multiple linear, quadratic, and indicator 

variables), and time-series. The overarching focus for this course is to determine the most 

appropriate analysis method and provide thorough interpretations. All p-values and confidence 

intervals (except for two proportions) are generated using software; students should already have 

a solid foundation of the computations from their first course. However, students are still 

expected to do other by-hand calculations such as various test statistics (e.g., chi-squared, non-

parametric test statistics), predictions for regression, and finally, be able to fill-in missing pieces 

of outputs (such as test statistics, expected counts, and p-values (from multiple choice options)).  

Course Design 

 Although the content of the course remained the same, how the class was taught, as well as 

the assessments that were given, were designed to allow for students to see the applications of 

the course content both immediately as well as to their future careers.  

One aspect that was created in this new design was the inclusion of “Laptop Days” (LDs) 

throughout the course. During these LDs, students worked in pairs during the class period and 

were asked to have at least one laptop between them. Students were given a real dataset (or 

simulated dataset based on a real result) that pertained to the topic at hand. Each pair was given 

an assignment where they were provided a description of the dataset and goals of the study. For 

classroom purposes, students were also provided with questions that were similar to what would 

show up on a quiz or test. Students were asked to work together to analyze the data in a way that 

answers the goals that were given. Although students were provided with questions that would 

be similar to those found on a quiz or exam, that is not what they were asked to turn in; instead, 

they were asked to turn in a written report (not a research paper) of their findings. 

After completing the analysis for their LD, students worked on writing a report where the 

intended audience was their (future) boss. Students were asked to provide goals, variables 
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recorded, a descriptive summary of the data, inferential results, and recommendations. In 

addition, students were asked to include an appendix that contains the output used and why they 

chose the corresponding analysis method. Reports were typically about two pages in length 

(excluding the appendices) and were due the class period following the LD. This report was 

intentionally designed to not be a formal research paper, but instead, be an overview of the 

important and interesting findings. The idea was for students to get used to briefly and clearly 

communicating important results in a non-technical way. In addition, these reports served as 

mock write-ups for the business world. 

Besides LDs, the typical class day was a mix of lecture and discussion. This included both 

writing on the board and software demonstration. Having a desire for students to think beyond 

the last step of a hypothesis test or confidence interval, the question “now what?” was asked and 

discussed quite often. Why is this result important? What should happen next? As an example of 

this discussion, suppose a company was testing two new sodas for market. It was found that soda 

2 was preferred to soda 1. Although students wanted to jump to the conclusion that soda 2 should 

be marketed, they were led to think about if the customers even liked soda 2 or did they dislike 

soda 1? They then realized that they had not actually answered these questions and began to see 

the importance of follow-up analyses.  

Students’ LD grades accounted for 10% of their course grade. The rest of the grade was 

broken down into homework (10%), in-class quizzes (10%), three mid-term exams (45%), and a 

final exam (25%). Each of the exams included an in-class and take-home component, where the 

take-home component accounted for 20% of the exam score and involved using software. 

Research Questions 

After intentionally designing the course to improve student connections, it was of interest to 

see how students’ attitudes changed during this second statistics course, if at all. This led to the 

following research questions that will guide the analyses: 

¶ How do attitudes change over the duration of a second required statistics course? (RQ1)  

¶ Is the instructor of the first course a factor when measuring attitude changes in the second 

course? (RQ2) 

Participants 

 The university this study took ace at is a regional university with a large proportion of 

commuter students and an undergraduate enrollment of around 12,000 students. The course 
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being studied is a business statistics II course, where students must have successfully completed 

a first semester statistics course with a C- or better. All students enrolled in the course did so 

because it was required for their major. This study included 96 students with a mean age of 21.3 

years (3.2 year standard deviation) and 52.08% identified as female. Some previous literature has 

shown that the mean age of students in a first semester statistics course tends to be around 21 

years of age and 58% identified as female (Wroughton et al., 2013). Thus, one can note that there 

is about the expected difference in mean age of the students (as a semester is roughly 0.5 a year). 

In addition, there is not much difference in the percentage of students who were female. 

 There has been some research on the substantial impact that an instructor can make on both 

student performance and their attitudes (Xu et al., 2020). Thus, in order to control the instructor 

effect as much as possible, all students used in this study had the same instructor for the second 

course. However, knowing that students’ first statistics instructor could have an impact on their 

feelings about the second course, the students’ first statistics instructor (author or not author) was 

also investigated when looking at attitude results. 

Instrument: Survey of Attitudes Towards Statistics (SATS) 

 The Survey of Attitudes Towards Statistics (SATS) (Schau, 2003) has been a widely used 

tool for assessing students’ attitudes in an introductory statistics course. The SATS-36 

instrument consists of 36 7-point Likert scale questions that are broken into six components 

(Schau, 2003): Affect, Cognitive Competence, Value, Difficulty (note that a higher score here 

actually means the student finds the class less difficult), Interest, and Effort.  

 The SATS-36 is intended to be given as a pre- and post-assessment at the beginning and end 

of the semester. Schau and Emmi̇oğlu performed a large-scale study across multiple years and 

many universities. They reported the SATS results of this first semester statistics course in their 

2012 paper (p. 91). They found that the mean change in scores (post-test-pre-test) for Affect, 

Cognitive Competence, and Difficulty were slightly positive (0.1 to 0.15 point increases) while 

there were negative changes in Value, Effort, and Interest (-0.5 to -0.32 points). There is some 

concern over the Effort component as the mean is generally quite high for students on the pre-

test leaving little to no room for increases. As Schau and Emmi̇oğlu state, the best statistical 

methods to deal with this type of issue are not yet clear. In addition, Schau and Emmi̇oğlu 

indicate that a difference of 0.5-point or more is considered to be an important finding. There 

were two components in their results that are at this magnitude: the negative changes in Value 
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and Interest. These results found by Schau and Emmi̇oğlu (2012), were treated as the historical 

comparison for the completion of a first statistics course. 

The pre and post-test of the SATS-36 will be used to measure attitudes of the students in the 

second statistics course. In all situations, the pre-test was given after the first day of class during 

the first week and the post-test was given the week prior to final exams, both of which were 

administered online.  

Methods & Results 

In order to first investigate attitudes, the SATS-36’s components’ mean changes will be of 

interest. Although all six attitude components were recorded, Effort will not be investigated due 

to its historical problems with being extremely high on the pre-test leaving little room for an 

improvement in student attitude. As a 0.5-point change in mean attitude scores is considered an 

important finding, and with sample sizes ranging between 23 and 96 over the duration of the 

analysis, when performing all tests of significance an overall 10% significance level will be used. 

These sample sizes correspond to powers ranging between 63% and 99%, with 90% power 

occurring at a sample size of 44. When multiple tests are performed, a Bonferroni adjustment 

will be made.  

The first part of the analysis will be guided by RQ1, examining just the five attitude 

components (Affect, Cognitive Competence, Value, Difficulty, and Interest) of the second 

statistics course. Investigation of the QQ plots of the differences and insignificant tests of 

normality (smallest p-value = 0.222) allow for multiple paired t-tests (with a Bonferroni 

adjustment) to be performed. As previously mentioned, the SATS-36 was administered as a pre- 

and post-test for the course. Only students who completed both the pre- and post-test are 

included in this analysis. Results for the 96 students are found in Table 1 below: 

Table 1 

Student Attitude Survey Results of Second Statistics Course ï Mean Scores 

Component 
Pretest Posttest Change (n = 96) 

Mean SD Mean SD Mean SD P-value 

Affect 4.31 1.00 4.79 1.01 0.48 0.95 <0.0001* 

Cog. Comp. 5.14 1.01 5.39 1.07 0.25 0.87 0.0059* 

Value 5.30 1.10 5.21 1.21 -0.09 1.02 0.3895 

Difficulty 3.45 0.83 3.72 0.82 0.27 0.80 0.0013* 

Interest 4.74 1.08 4.50 1.12 -0.25 1.08 0.0256 
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The first comparison to be made is that of the pre-test scores of those coming into the 

business statistics II course (Table 1) to the post-test historical results for the introductory course 

found by Schau and Emmi̇oğlu (2012, p. 91). One would expect that the attitudes coming into a 

second statistics course to be similar to those coming out of a first statistics course. However, 

this is not necessarily the case. Value and Interest here are much higher than the post-test scores 

coming out of the first course, which were 4.72 and 4.00 respectively, Difficulty was much lower 

than what was found coming out of the first course (3.90), and Affect and Cognitive Competence 

were similar to the post-test historical results (4.30 and 5.03 respectively). So, students coming 

into the second course had higher interest levels and believed the class was more valuable than 

what was historically found when finishing the first course. In addition, students tended to come 

in thinking that this course would be more challenging. Although the difference in difficulty is 

not too surprising, it is curious as to why the Value and Interest components would have such 

large (and positive) differences.  

 Turning attention to the changes in attitudes during the second course (RQ1), Affect, 

Cognitive Competence, and Difficulty all show a positive mean change, indicating that students’ 

attitudes became more favorable during the course. In contrast, Value and Interest were negative 

mean changes, indicating their attitudes became less favorable. Performing the multiple paired t-

tests using an adjusted significance level of 2% (
Ϸ
), Affect, Cognitive Competence, and 

Difficulty all had significant positive changes in mean attitudes. In addition, Affect had close to a 

0.5-point difference while Cognitive Competence and Difficulty were only half of that.  

Because it is known that an instructor can have an effect on students’ attitudes (Xu et al., 

2020), it was also of interest to compare the attitudes of students in this second statistics course 

based on if they had the author for the first course or not. All conditions for multivariate analysis 

of variance (MANOVA) were assessed and were within reason. Thus, MANOVA was conducted 

and resulted in a p-value of 0.5316 (Wilk’s Lambda) leading to the belief that there were no 

significant differences in mean pre-test attitudes of these components based on having had the 

author for the first statistics course. Similar results were found when comparing the mean 

attitude changes of these two groups through MANOVA (p-value = 0.8507). Thus, no further 

analyses were needed. The takeaway from this analysis is that having had the author for the first 

course had no significant effect on the attitudes in the second statistics course. 

Discussion 
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Looking more closely at the results presented, it was first shown that over the duration of the 

second course, there were significant positive changes in mean attitude scores for Affect, 

Cognitive Competence, and Difficulty. This suggests that students, on average, significantly felt 

more positive feelings concerning statistics, felt significantly better about their knowledge and 

ability to apply statistical skills learned, and found the class to be less difficult than they thought 

it would be. All of these were also of greater magnitude (0.25 to 0.50 point) than what was found 

historically in the first course. Both Value and Interest had mean changes that were negative, but 

neither was significantly so. Historically, the first statistics course found a mean change of -0.32 

for Value and -0.50 for Interest. In the second course here, these changes were not near as 

negative changes being -0.09 and -0.25 respectively. This helps show that after the second 

statistics course the students have less negative attitudes toward the Value of and their Interest in 

statistics when compared to a first course. In addition, one should note that the mean post test 

scores at the end of the second statistics course for four of the components are much higher than 

what was found historically at the end of the first statistics course. This is true for Affect (4.79 

vs. 4.30), Cognitive Competence (5.39 vs. 5.03), Value (5.21 vs. 4.72), and Interest (4.50 vs. 

4.00). 

Out of concern of an instructor effect, follow-up analyses were conducted that compared 

students who had the author as their instructor of their first course to those who did not. Separate 

tests were then conducted on the mean pre-test scores coming into the second course as well as 

on the mean attitude changes over the course. Both tests showed no evidence of significant 

differences in these two groups. This allows us to believe that there is no difference in these two 

populations for how their attitudes were coming into the course or with how their attitudes 

changed during the course. This suggests that the positive mean changes that were found for 

Affect, Cognitive Competence, and Difficulty hold true regardless of what instructor the students 

had for their first statistics course. 

Conclusion 

 The results here look at a second algebra-based statistics course designed to increase 

connections with students’ careers and lives. The LDs that were included in this design were 

done so in a way to allow students to see how they could use statistics in their future careers 

while the inclusion of real data allowed for better connections to their current lives. Discussions 

and other assessments that were created were done so with the same goal in mind.  
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 The investigation of students’ attitudes over the duration of the course using the SATS-36 

showed quite favorable findings with significant positive changes found in Affect, Cognitive 

Competence, and Difficulty, with no significant change in Interest or Value. All of these attitude 

findings are better than what has been found historically in the first statistics course, as well as in 

previous research. In addition, it was found that the mean attitudes at the end of the second 

statistics course were much higher than what has been found historically with the first course. 

Furthermore, it was found that the instructor for the first statistics course was not a significant 

factor in the students’ changes in mean attitudes. Thus, it did not matter if the students had the 

author for the first course or not – similar attitude changes occurred regardless. Overall, the 

course design appeared to be a great success for student learning and for making connections to 

their careers and lives.  
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Proportional reasoning is often a stumbling block for students well into college mathematics. 

Teachers often choose to teach their students proportional reasoning through formulas even 

though they themselves use a variety of strategies to solve proportional problems. This 

qualitative case study examines four college studentsô proportional reasoning on two types of 

proportional reasoning problems. Results showed that students who had assimilated two levels 

of units could apply their whole number multiplication schemes to whole number proportional 

problems while the assimilation of three levels of units was required to apply them to whole 

number and fractional proportional problems. 

 

Literature Review 

 Proportional reasoning is “being able to construct and algebraically solve proportions” 

(Lamon, 1993, p. 41). While proportional reasoning is most often a topic of middle-grades 

mathematics instruction (CCSSO, 2010), it is a stumbling block for students even in college 

calculus (Byerly, 2019). Furthermore, many middle-grades students lack the necessary cognitive 

structures to construct multiplicative reasoning (Zwanch & Wilkins, 2020), let alone proportional 

reasoning. These findings bring to light the importance of continuing to examine students’ 

proportional reasoning, the cognitive structures that support or limit proportional reasoning, and 

the ways that these limitations manifest in students’ undergraduate mathematics coursework. 

 Fisher (1988) found that secondary teachers solve proportion problems intuitively, additively, 

proportionally, with a formula, or algebraically, if they answer at all. The most popular strategy 

chosen by the secondary teachers to teach their students when solving proportions was formulas 

regardless of the method these teachers used to solve proportion problems. Thus, while the same 

variety of strategies teachers used to solve these problems might benefit students’ success with 

proportional reasoning, using formulas was favored in classroom instruction.  

Additionally, Lamon (1993) concluded that students also use different strategies to solve 

proportion problems based on the semantic type of the problem. Two of the semantic problem 

types Lamon defined are well-chunked measures and stretchers and shrinkers. Well-chunked 

measures problems are those in which two extensive measures are being compared to form a 

rate. For example, in part c of the cookie problem (Figure 1), students may form a rate of  cups 
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sugar to 2 cups of flour and compare that to the rate of 1 cup sugar to ς  cups flour. Stretchers 

and shrinkers problems reflect “a one-to-one continuous ratio-preserving mapping … between 

two quantities [and] … the situation involves scaling up (stretching) or scaling down 

(shrinking)” (Lamon, 1993, p. 43). For example, in part a of the cookie problem, students may 

think about shrinking the recipe from 24 cookies to 9 and determine how the sugar will be 

shrunk to preserve the ratio of sugar to cookies. Specifically, well-chunked measures problems 

were more accessible to students than stretchers and shrinkers, and students used less 

sophisticated strategies when solving stretchers and shrinkers. For instance, visual or additive 

reasoning, which includes guessing and checking, answers devoid of rationale, or other incorrect 

intuitive solutions, were used the most frequently on stretchers and shrinkers problems. Lamon 

concluded that these less sophisticated strategies were likely utilized most frequently on 

stretchers and shrinkers problems because many students did not identify the multiplicative 

nature of the tasks. In combination with Fisher’s (1988) finding, Lamon’s conclusion that 

students apply a variety of strategies when solving proportional reasoning problems, particularly 

based on the semantic type of problem given, makes it all the more important for teachers to be 

prepared to understand and deliver instruction on varied strategies and ways of thinking about 

proportions. This qualitative case study will examine the proportional reasoning of four 

undergraduate students on a well-chunked measures proportion problem and a stretchers and 

shrinkers proportion problem. 

Figure 1 

The Cookie Recipe Problem 

A cookie recipe calls for  cups of sugar and yields 24 cookies. [answer in brackets] 

a. How many cups of sugar would be required to make 9 cookies? [  cup] 

b. Used only if part a was too challenging: How many cups of sugar would be required to 

make 12 cookies? [  cup] 

c. Which batch of cookies is sweeter? A recipe that calls for  cups of sugar and 2 cups or 

flour, or a recipe that calls for 1 cup of sugar and ς  cups of flour? [second recipe] 

 

Theoretical Framework 

Ulrich (2016) stated that the “assimilatory multiplicative relationship [of the third 

multiplicative concept] leads to the kind of immediate multiplicative reasoning needed for 
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proportional reasoning” (p. 38). As such, the multiplicative concepts will be used as a framework 

to understand how students construct and coordinate units, and how students’ construction and 

coordination of units is related to their proportional reasoning. Furthermore, Steffe et al. (2014) 

outlined students’ construction of a proportionality scheme as a reorganization of their numerical 

and fractional schemes, both of which are based in part on students’ units construction and 

coordination. Therefore, this study will examine how the cognitive structures that define 

students’ multiplicative concepts can be used to model their solutions on well-measured chunks 

and stretchers and shrinkers proportion problems. In addition, this study will examine how these 

solutions align with Steffe et al.’s proportionality scheme. 

Multiplicative Concepts 

The first multiplicative concept (MC1) describes the ability to assimilate with one level of 

units and to construct a second level of units (i.e., composite units) in mental activity 

(Hackenberg & Tillema, 2009), therefore conceiving of a multiplicative situation in activity 

(Steffe, 1992). For instance, MC1 students may construct two levels of units in activity by 

determining that 4 groups of 7 is 28 by using their fingers, or other figurative material, to count 

out 7 four times. In this situation, MC1 students first conceive of seven as a single unit and then 

repeat that unit four times, which constitutes a second level of units.  

In contrast, students with the second multiplicative concept (MC2) can assimilate with two 

levels of units and construct three levels of units in activity (Hackenberg & Tillema, 2009), 

which makes multiplicative situations assimilatory (Ulrich, 2016) or immediate. MC2 students 

would not require figurative material to determine that 4 groups of 7 is 28, because they can 

immediately conceive of the two levels of units. If asked to add an additional 6 groups of 7 to the 

4 groups of 7, an MC2 student would likely determine that 6 groups of 7 is 42 and add that to 28 

to find 70. The limitation of an MC2 is in their reflection on the unit structure. The third level of 

units decays following mental activity because it is constructed in activity. In this example, MC2 

students are left to reflect only on 70 units as a structure containing 28 units and 42 units. 

The third, and most sophisticated, multiplicative concept (MC3) describes a student’s ability 

to assimilate with three levels of units and construct a fourth or fifth level of units in activity 

(Hackenberg & Tillema, 2009). This provides economy of reasoning. For instance, an MC3 

student can immediately understand 28 as 4 groups of 7 and 42 as 6 groups of 7, can think about 

the total being comprised of 28 and 42, or 4 groups of 7 and 6 groups of 7, and can flexibly 
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switch among each organization of unit structures. This is the “immediate multiplicative 

reasoning” (Ulrich, 2016, p. 38) that makes proportional reasoning available to MC3 students.  

Proportionality Schemes 

Building on the units construction and coordination that define the multiplicative concepts, 

Steffe et al. (2014) found that students can demonstrate proportionality at two levels. The more 

rudimentary is an awareness of proportionality. At this level, students can apply the operations 

of an MC2 to constitute a ratio of whole numbers as a multiplicative structure. Steffe et al. detail 

an example in which a student, Jill, with an awareness of proportionality is told that three cups of 

water and two tablespoons of lemonade powder are mixed to make lemonade. Jill is asked how 

much lemonade powder should be mixed with 15 cups of water. She responds, “Ten … Five 

times two – I don’t know how that got in my head” (p. 62). Jill applied her whole number 

multiplicative concept (MC2) to reason about the proportions but was only ephemerally aware of 

how she solved the problem and solved by applying whole number knowledge. In the case of 

making a fractional serving (i.e., how many cups of water should be mixed with one tablespoon 

of powder), Jill replied, “It’s like, one half cup of water, right?” (p. 61). In this fractional case, 

she maintains an awareness of proportionality because she halved the two tablespoons of 

lemonade powder. However, she could not halve the water; instead, she concluded that the recipe 

called for one half cup. In this statement, she conflates half of the recipe with half of a cup. 

The more sophisticated level that students can construct is a proportionality scheme. Steffe et 

al. (2014) explain this scheme using Jack’s reasoning. On the lemonade problem, Jack is asked 

how much powder should be mixed with one cup of water. He says, “If you had three it takes 

two … so that means that three halves make up one tablespoon… so you’d only need two thirds 

of a tablespoon to make one cup of lemonade” (p. 65). Jack’s reasoning indicates a 

proportionality scheme because he calculated and applied a unit ratio to solve. This is evidence 

that he coordinated awareness of proportionality with his MC3 (Steffe et al., 2014).  

This study asks, to what extent are students’ multiplicative concepts related to their 

proportionality schemes? Additionally, it asks, to what extent can students with different 

proportionality schemes solve well-chunked measures and stretchers and shrinkers proportion 

problems? 

Methods 
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Four undergraduate students participated in this qualitative case study. Three of the students 

had constructed an MC2; these students’ pseudonyms are Claire, Darlene, and Phoebe. One 

student had constructed an MC3; her pseudonym is May. Each student participated in a semi-

structured clinical interview that lasted approximately 45 minutes. The interview focused on 

students’ proportional reasoning. The cookie task (Figure 1) will be the focus of analysis in this 

study. Parts a-b of the cookie task are stretchers and shrinkers problems, and part c is a well-

chunked measures problem.  

Results & Analysis 

MC2 Studentsô Proportional Reasoning 

Claire, Darlene, and Phoebe could not solve part a of the cookie problem. In attempting part 

a, they could not find a unit ratio. Claire, for example, skip counted by nines to find how many 

times larger 24 was than 9. When that method did not work because counting by nines does not 

include 24, she could not generate the unit ratio. This is one example of the counterindications of 

proportionality schemes generated by these students on part a of the cookie problem. These 

responses can also be interpreted as limitations of the students’ multiplicative concepts. A unit 

ratio of 9:24 constitutes a three-level unit structure in which the ratio contains 24 parts, one of 

which is iterated 9 times. To then apply that unit ratio to the  cups of sugar in the problem 

requires operations on three levels of units, which is unavailable to MC2 students. Thus, the lack 

of a proportionality scheme aligns for each of these students with limitations of an MC2.  

Each of the MC2 students was successful on part b because they recognized that 12 cookies 

were half of 24, so they also halved the sugar. Darlene, for instance, found that the smaller 

cookie recipe would require   cup of sugar, “Just cause it’s easier for me because it’s [12] half 

of this [24], so then you just cut that [  ] in half [to get  ].” However, to find half of , Darlene 

reasoned additively, rather than multiplicatively. She said, “I brought that [  ] up to  so I could 

take two off of it.” Darlene re-wrote  as  prior to determining that the smaller batch of cookies 

required  cups of sugar, and then she equated  to  cups of sugar. Her language that she “could 

take two off of it” indicated that she conceived of  as , rather than ς . The types of 

responses given by MC2 students on part b of the cookie problem provide evidence of an 

awareness of proportionality, as supported by the MC2 students’ whole number multiplicative 
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reasoning. Thus, while the 12:24 unit ratio is interpreted as a three-level unit structure, just as the 

9:24 unit ratio was, the students leveraged their whole number multiplicative knowledge on part 

b to interpret 12:24 as one half. Such an interpretation is useful for MC2 students because they 

could disregard the two-times iteration of 12 parts contained within 24 parts that characterizes 

the three-level unit structure and instead conceive of the unit ratio as simply one part out of two. 

Thus, in situations where MC2 students could identify the unit ratio using their whole number 

multiplicative concepts, they were able to solve a stretchers and shrinkers proportion problem. 

This manner of reasoning is consistent with an awareness of proportionality and was supported 

by the students’ MC2. 

On part c, Claire and Phoebe incorrectly concluded that the first batch of cookies was 

sweeter. Claire could not determine which batch of cookies was sweeter because she could not 

find the unit ratio. She re-wrote the amounts of sugar and flour given in the problem with 

common denominators as ȡ , and ȡ , and expressed uncertainty that this was productive 

before explaining, “It wasn’t the denominators I was trying to get right, the same, it was these 

numerators [12 and 15]. I’m not sure how to do that, but I still think it’s the first [batch that is 

sweeter].” Claire’s explanation indicates that she knew equating the numerators for the second 

fractions (i.e., the amounts of flour) would facilitate her comparison of the amounts of sugar, but 

her whole number multiplicative schemes did not support such a comparison. Phoebe also re-

wrote the given quantities and could not identify a unit ratio, so she guessed that the first batch 

was sweeter. As on part a, these students were limited by their units construction because they 

could not construct a three-level unit structure with a unit ratio containing ς  cups of flour 

whose parts could be iterated 2 times to compare cookie recipes.  

Darlene found the second batch was sweeter. Darlene also re-wrote the given quantities as  

and , and  and . But, different from Claire and Phoebe, Darlene reasoned that, 

I just put the  of the sugar and the 2 cups flour to have the same denominator ÁÎÄ  and 

then I did the same with these [1 cup and ςcups became  and ]. And so, this [4 from the 

fraction  ] is like  of what this is [12 from the fraction ]. And then over here, 6 [from the 
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fraction ] can’t go into 15 [from the fraction ] three times like this [4 and 12] can so it [the 

amount of sugar in the second recipe] would be over. 

Darlene’s approach began like Claire’s, but Claire was stymied when she could not identify the 

unit ratio. Darlene was successful because she reasoned that the first recipe called for  the sugar 

compared to flour, but in the second recipe, the flour to sugar was less than three times. 

Darlene’s reasoning is consistent with an awareness of proportionality because she applied her 

whole number multiplicative concepts to determine that the second batch of cookies was sweeter. 

This was evident when she said, “6 can’t go into 15 three times like this can so it would be over.” 

Darlene reasoned that because six times three would “be over” 15, this batch of cookies had a 

higher proportion of sugar to flour. 

MC3 Studentsô Proportional Reasoning  

May constructed a proportional equation  to solve part a of the cookie problem, and 

said, “One-fourth cups. … I did the scales are equal to the same factor. I just found the missing 

factor. … Part [ ] to whole [24], Missing part [x] to whole [9]. … Like, sugar to cookies, sugar to 

cookies.” This shows May’s coordination of two three-level unit structures. The first structure 

contained the relationship between two-thirds and 24, and the second contained the relationship 

between x and 9. Although her method was procedural, she reflected on the proportional 

relationship evidenced by her retention of unit structures after activity. May’s reflection on two 

three-level unit structures following activity is characteristic of an MC3, and supported a solution 

to this problem that is characteristic of a proportionality scheme. 

On part c, May wrote two ratios ȡς and ρȡς . Then, she used two concurrent proportional 

equations to re-scale the given recipes to 10 cups of flour. May said, 

I basically took them both and set them to where the flour would be the same amount and 

like proportionally whichever one had the greater amount of sugar is the one that would be 

sweeter. [Interviewer: And what was the amount of flour that you used for both?] 10. 

Because ς  and 2 both go into 10. 

May did what the MC2 students could not; she anticipated a common referent for the amount of 

flour that allowed her to compare the amounts of sugar. This was supported by May’s MC3 

because she could maintain the three-level unit structures represented by each cookie recipe 
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while simultaneously creating a third three-level unit structure to compare the amounts of flour, 

thereby identifying an appropriate common multiple, 10. As on part a, May’s MC3 supported a 

solution on part c that is characteristic of a proportionality scheme. 

Discussion 

In response to the first research question, we attribute an awareness of proportionality to the 

MC2 students, but a proportionality scheme can only be attributed to May. Assimilating with two 

levels of units was sufficient to support the MC2 students’ application of whole number 

multiplicative schemes to solve whole number proportion problems. In contrast, May leveraged 

her ability to reflect on three levels of units and to coordinate multiple three-level unit structures 

to solve whole number and fractional proportion problems. In response to the second research 

question, we find that the students’ awareness of proportionality or proportionality scheme were 

applied consistently across problem types. Lamon (1993) found that students have an easier time 

solving some semantic problem types compared to others, and specifically, that stretchers and 

shrinkers problems are more difficult for students. Our results are counter to this finding, 

however, and indicate that the students’ success was more closely tied to the numerical 

complexity of the problem than to the semantic problem type. Future research should incorporate 

all four semantic problem types and should examine students’ awareness of proportionality and 

proportionality schemes across each semantic problem type. 
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